Carbon, which is often used as an additive to silicon carbide powder, is thought to facilitate densification during sintering by aiding the removal of the native SiO2 layer, which is present on the starting SiC powder. The mechanism is the reduction of SiO2 to SiC with the formation of primarily CO gas, which diffuses out from the porous compact at a temperature below the normal sintering temperature. It has been found beneficial to hold the compact at an intermediate temperature to allow time for the CO and other gases to diffuse out before the pores close. We investigate this process using a computational model based on codiffusion of multiple gas species, which enables prediction of the gas and condensed phase compositions as a function of time and position in the specimen. The results are used to determine the optimum holding time for complete SiO2 removal as a function of key parameters, such as specimen thickness, particle size, temperature, etc., as well as the necessary amount of C additive. The results of the modeling are consistent with the experimentally observed spatial variation of density and composition in SiC compacts.
Densification of B4C during sintering can be aided by removing the native B2O3(condensed) (B2O3(c)) layer present on the starting B4C powder. B2O3 can be removed by adding excess C and holding the powder compact at an intermediate temperature below the normal sintering temperature. This allows time for CO and minor boron gases to diffuse out from the porous compact before the pores close. This process was examined using a computational model based on codiffusion of multiple gas species, which enables prediction of the gas‐ and condensed‐phase composition as a function of time and position in the specimen. The model, described previously elsewhere, was originally applied to the SiC/SiO2 system but has been adapted for the B4C/B2O3 system. The results are used to determine the optimum holding time for complete B2O3(c) removal as a function of key parameters, such as specimen thickness, particle size, temperature, etc. The role of gas‐phase transport in residual C and B4C profiles is also examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.