BackgroundLymphatic filariasis (LF) is targeted for global elimination through treatment of entire at-risk populations with repeated annual mass drug administration (MDA). Essential for program success is defining and confirming the appropriate endpoint for MDA when transmission is presumed to have reached a level low enough that it cannot be sustained even in the absence of drug intervention. Guidelines advanced by WHO call for a transmission assessment survey (TAS) to determine if MDA can be stopped within an LF evaluation unit (EU) after at least five effective rounds of annual treatment. To test the value and practicality of these guidelines, a multicenter operational research trial was undertaken in 11 countries covering various geographic and epidemiological settings.MethodologyThe TAS was conducted twice in each EU with TAS-1 and TAS-2 approximately 24 months apart. Lot quality assurance sampling (LQAS) formed the basis of the TAS survey design but specific EU characteristics defined the survey site (school or community), eligible population (6–7 year olds or 1st–2nd graders), survey type (systematic or cluster-sampling), target sample size, and critical cutoff (a statistically powered threshold below which transmission is expected to be no longer sustainable). The primary diagnostic tools were the immunochromatographic (ICT) test for W. bancrofti EUs and the BmR1 test (Brugia Rapid or PanLF) for Brugia spp. EUs.Principal Findings/ConclusionsIn 10 of 11 EUs, the number of TAS-1 positive cases was below the critical cutoff, indicating that MDA could be stopped. The same results were found in the follow-up TAS-2, therefore, confirming the previous decision outcome. Sample sizes were highly sex and age-representative and closely matched the target value after factoring in estimates of non-participation. The TAS was determined to be a practical and effective evaluation tool for stopping MDA although its validity for longer-term post-MDA surveillance requires further investigation.
A challenge for coevolutionary theory is how different types of interaction influence the diversification of coevolving clades. Reciprocal specialization is characteristic of certain coevolving, mutualistic interactions, but whether this specialization seen in ecological time constrains changes in patterns of interaction over evolutionary time remains unclear. Here, we examine the co-radiation of Glochidion trees (Phyllanthaceae: Phyllanthus s. l.) and pollinating, seed-predatory Epicephala moths (Lepidoptera: Gracillariidae) on young (mostly later than 5 Ma) oceanic islands in southeastern Polynesia. Epicephala are the sole known pollinators of Glochidion trees, and show extreme reciprocal specialization in continental Asia. We find that Glochidion and Epicephala diversified across these islands through repeated, non-congruent colonizations, and that one recently colonizing Epicephala lineage has spread across 12 host species in three archipelagos in less than 1 Myr. These results indicate that reciprocal specialization and coadaptation do not prevent dramatic changes in associations between intimately associated taxa over short evolutionary time scales. Not only are these host associations more dynamic than previously recognized, but these changes in patterns of interaction may play an important role in the diversification of coevolving taxa.
BackgroundMass drug administration (MDA) programs have dramatically reduced lymphatic filariasis (LF) incidence in many areas around the globe, including American Samoa. As infection rates decline and MDA programs end, efficient and sensitive methods for detecting infections are needed to monitor for recrudescence. Molecular methods, collectively termed ‘molecular xenomonitoring,’ can identify parasite DNA or RNA in human blood-feeding mosquitoes. We tested mosquitoes trapped throughout the inhabited islands of American Samoa to identify areas of possible continuing LF transmission after completion of MDA.Methodology/Principle FindingsMosquitoes were collected using BG Sentinel traps from most of the villages on American Samoa's largest island, Tutuila, and all major villages on the smaller islands of Aunu'u, Ofu, Olosega, and Ta'u. Real-time PCR was used to detect Wuchereria bancrofti DNA in pools of ≤20 mosquitoes, and PoolScreen software was used to infer territory-wide prevalences of W. bancrofti DNA in the mosquitoes. Wuchereria bancrofti DNA was found in mosquitoes from 16 out of the 27 village areas sampled on Tutuila and Aunu'u islands but none of the five villages on the Manu'a islands of Ofu, Olosega, and Ta'u. The overall 95% confidence interval estimate for W. bancrofti DNA prevalence in the LF vector Ae. polynesiensis was 0.20–0.39%, and parasite DNA was also detected in pools of Culex quinquefasciatus, Aedes aegypti, and Aedes (Finlaya) spp.Conclusions/SignificanceOur results suggest low but widespread prevalence of LF on Tutuila and Aunu'u where 98% of the population resides, but not Ofu, Olosega, and Ta'u islands. Molecular xenomonitoring can help identify areas of possible LF transmission, but its use in the LF elimination program in American Samoa is limited by the need for more efficient mosquito collection methods and a better understanding of the relationship between prevalence of W. bancrofti DNA in mosquitoes and infection and transmission rates in humans.
Six mosquito species were identified in a survey of containers associated with 347 households in four villages in American Samoa. Aedes polynesiensis Marks (Diptera: Culicidae) and Aedes aegypti (L) were the most abundant species, representing 57% and 29% of the mosquitoes identified. Culex quinquefasciatus (Say), Culex annulirostris (Skuse), Aedes oceanicus (Belkin) and Toxorhynchites amboinensis (Doleschall) were also found. Aedes aegypti and Ae. polynesiensis showed distinct differences in their use of containers, preferring large and small containers, respectively. By contrast with previous studies, Ae. polynesiensis utilized domestic and natural containers with equal frequency, whereas Ae. aegypti continued to be found predominantly in domestic containers. Only 15% of containers holding immature mosquitoes included pupae and fewer than 10 Aedes spp. pupae were found in most containers with pupae. An estimated 2289 Ae. polynesiensis and 1640 Ae. aegypti pupae were found in 2258 containers. The presence of both species in the same container did not affect the mean density of either species for larvae or pupae. Glass jars, leaf axils, tree holes and seashells produced few Aedes spp. pupae in any of the study villages. Overall, 75% of Ae. polynesiensis pupae were found in buckets, ice-cream containers and tyres, with <7% being produced in natural containers, whereas 82% of Ae. aegypti pupae were found in 44-gallon (US) drums ( approximately 166L), buckets and tyres. Source reduction efforts targeting these container types may yield significant reductions in both Ae. polynesiensis and Ae. aegypti populations in American Samoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.