Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops.
Algae are a widely touted source of bioenergy with high yields, appreciable lipid contents, and an ability to be cultivated on marginal land without directly competing with food crops. Nevertheless, recent work has suggested that large-scale deployment of algae bioenergy systems could have unexpectedly high environmental burdens. In this study, a "well-to-wheel" life cycle assessment was undertaken to evaluate algae's potential use as a transportation energy source for passenger vehicles. Four algae conversion pathways resulting in combinations of bioelectricity and biodiesel were assessed for several relevant nutrient procurement scenarios. Results suggest that algae-to-energy systems can be either net energy positive or negative depending on the specific combination of cultivation and conversion processes used. Conversion pathways involving direct combustion for bioelectricity production generally outperformed systems involving anaerobic digestion and biodiesel production, and they were found to generate four and fifteen times as many vehicle kilometers traveled (VKT) per hectare as switchgrass or canola, respectively. Despite this, algae systems exhibited mixed performance for environmental impacts (energy use, water use, and greenhouse gas emissions) on a "per km" basis relative to the benchmark crops. This suggests that both cultivation and conversion processes must be carefully considered to ensure the environmental viability of algae-to-energy processes.
We used geographic information systems (GIS) to analyze the structure of a second-growth forest landscape (9600 ha) that contains scattered old-growth patches. We compared this landscape to a nearby, unaltered old-growth landscape on comparable landforms and soils to assess the effects of human activity on forest spatial pattern. Our objective is to determine if characteristic landscape structural patterns distinguish the primary old-growth forest landscape from the disturbed landscape. Characteristic patterns of old-growth landscape structure would be useful in enhancing and restoring old-growth ecosystem functioning in managed landscapes. Our natural old-growth landscape is still dominated by the original forest cover of eastern hemlock (Tsuga canadensis), sugar maple (Acer saccharum), and yellow birch (Betula allegheniensis). The disturbed landscape has only scattered, remnant patches of old-growth ecosystems among a greater number of early successional hardwood and conifer forest types. Human disturbances can either increase or decrease landscape heterogeneity depending on the parameter and spatial scale examined. In this study, we found that a number of important structural features of the intact old-growth landscape do not occur in the disturbed landscape. The disturbed landscape has significantly more small forest patches and fewer large, matrix patches than the intact landscape. Forest patches in the fragmented landscape are significantly simpler in shape (lower fractal dimension, D) than in the intact old-growth landscape. Change in fractal dimension with patch size, a relationship that may be characteristic of differing processes of patch formation at different scales, is present within the intact landscape but has been obscured by human activity in the disturbed landscape. Important ecosystem juxtapositions of the old-growth landscape, such as hemlock with lowland conifers, have been lost in the disturbed landscape. In addition, significant landscape heterogeneity in this glaciated region is produced by landforms alone, without natural or human disturbances. The features that distinguish disturbed and old-growth forest landscape structure that we have described need to be examined elsewhere to determine if such features are characteristic of other landscapes and regions. Such forest landscape structural differences that exist more broadly could form the basis of landscape principles to be applied both to the restoration of old-growth forest landscapes and the modification of general forest management for enhancing biodiversity. These principles may be particularly useful for constructing integrated landscapes managed for both commodity production and biodiversity protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.