Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stagePlasmodium falciparumandCryptosporidium parvumin cell-culture studies. Target deconvolution inP. falciparumhas shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of bothPfKRS1 andC. parvumKRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90= 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology betweenPfKRS1 andCpKRS. This series of compounds inhibitCpKRS andC. parvumandCryptosporidium hominisin culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds forPfKRS1 andCpKRS vs. (human)HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.
The replacement of one chemical motif with another that is broadly similar is a common method in medicinal chemistry to modulate the physical and biological properties of a molecule (i.e., bioisosterism). In recent years, bioisosteres such as cubane and bicyclo[1.1.1]pentane (BCP) have been used as highly effective phenyl mimics. Herein, we show the successful incorporation of a range of phenyl bioisosteres during the opensource optimization of an antimalarial series. Cubane ( 19) and closo-carborane (23) analogues exhibited improved in vitro potency against Plasmodium falciparum compared to the parent phenyl compound; however, these changes resulted in a reduction in metabolic stability; unusually, enzyme-mediated oxidation was found to take place on the cubane core. A BCP analogue ( 22) was found to be equipotent to its parent phenyl compound and showed significantly improved metabolic properties. While these results demonstrate the utility of these atypical bioisosteres when used in a medicinal chemistry program, the search to find a suitable bioisostere may well require the preparation of many candidates, in our case, 32 compounds.
The Open Source Malaria
(OSM) consortium is developing compounds
that kill the human malaria parasite, Plasmodium falciparum, by targeting PfATP4, an essential ion pump on
the parasite surface. The structure of PfATP4 has
not been determined. Here, we describe a public competition created
to develop a predictive model for the identification of PfATP4 inhibitors, thereby reducing project costs associated with the
synthesis of inactive compounds. Competition participants could see
all entries as they were submitted. In the final round, featuring
private sector entrants specializing in machine learning methods,
the best-performing models were used to predict novel inhibitors,
of which several were synthesized and evaluated against the parasite.
Half possessed biological activity, with one featuring a motif that
the human chemists familiar with this series would have dismissed
as “ill-advised”. Since all data and participant interactions
remain in the public domain, this research project “lives”
and may be improved by others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.