SUMMARY This paper presents the first computational fluid dynamics (CFD)simulations of viscous flow due to a small sphere vibrating near a fish, a configuration that is frequently used for experiments on dipole source localization by the lateral line. Both two-dimensional (2-D) and three-dimensional (3-D) meshes were constructed, reproducing a previously published account of a mottled sculpin approaching an artificial prey. Both the fish-body geometry and the sphere vibration were explicitly included in the simulations. For comparison purposes, calculations using potential flow theory (PFT) of a 3-D dipole without a fish body being present were also performed. Comparisons between the 2-D and 3-D CFD simulations showed that the 2-D calculations did not accurately represent the 3-D flow and therefore did not produce realistic results. The 3-D CFD simulations showed that the presence of the fish body perturbed the dipole source pressure field near the fish body, an effect that was obviously absent in the PFT calculations of the dipole alone. In spite of this discrepancy, the pressure-gradient patterns to the lateral line system calculated from 3-D CFD simulations and PFT were similar. Conversely, the velocity field, which acted on the superficial neuromasts (SNs), was altered by the oscillatory boundary layer that formed at the fish's skin due to the flow produced by the vibrating sphere (accounted for in CFD but not PFT). An analytical solution of an oscillatory boundary layer above a flat plate, which was validated with CFD, was used to represent the flow near the fish's skin and to calculate the detection thresholds of the SNs in terms of flow velocity and strain rate. These calculations show that the boundary layer effects can be important, especially when the height of the cupula is less than the oscillatory boundary layer's Stokes viscous length scale.
The lateral line system on fish has been found to aid in schooling behavior, courtship communication, active and passive hydrodynamic imaging, and prey detection. The most widely used artificial prey stimulus has been the vibrating sphere, which some fish are able to detect even when the signal velocities to its lateral line are orders of magnitude smaller than background current velocities. It is not clear how the fish are able to extract this signal. This thesis uses a series of computational fluid dynamic (CFD) simulations, matched with recent experiments, to quantify the effects of 3D fish body parts on the received dipole signals, and to determine signal detection abilities of the lateral line system in background flow conditions. An approximation is developed for the dipole induced, oscillatory, boundary layer velocity profile over the surface of a fish. An analytic solution is developed for the case when the surface is a wall, and is accurate at points of maximal surface tangential velocity. Results indicate that the flow outside a thin viscous layer remains potential in nature, and that body parts, such as fins, do not significantly affect the received dipole signal in still water conditions. In addition, the canal lateral line system of the sculpin is shown to be over 100 times more sensitive than the superficial lateral line system to high frequency dipole stimuli.Analytical models were developed for the Mottled Sculpin canal and superficial neuromast motions, in response to hydrodynamic signals. When the background flow was laminar, the neuromast motions induced by the stimulus signal at threshold had a spectral peak larger than spectral peaks resulting from the background flow induced motions. When the turbulence level increased, the resulting induced neuromast motions had dominant low frequency oscillations. For fish using the signal encoding mechanisms of phase-locking or spike rate increasing, signal masking should occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.