Filamentous fungi are the cause of serious human and plant diseases but are also exploited in biotechnology as production platforms. Comparative genomics has documented their genetic diversity, and functional genomics and systems biology approaches are under way to understand the functions and interaction of fungal genes and proteins. In these approaches, gene functions are usually inferred from deletion or overexpression mutants. However, studies at these extreme points give only limited information. Moreover, many overexpression studies use metabolism-dependent promoters, often causing pleiotropic effects and thus limitations in their significance. We therefore established and systematically evaluated a tunable expression system for Aspergillus niger that is independent of carbon and nitrogen metabolism and silent under noninduced conditions. The system consists of two expression modules jointly targeted to a defined genomic locus. One module ensures constitutive expression of the tetracyclinedependent transactivator rtTA2 S -M2, and one module harbors the rtTA2 S -M2-dependent promoter that controls expression of the gene of interest (the Tet-on system). We show here that the system is tight, responds within minutes after inducer addition, and allows fine-tuning based on the inducer concentration or gene copy number up to expression levels higher than the expression levels of the gpdA promoter. We also validate the Tet-on system for the generation of conditional overexpression mutants and demonstrate its power when combined with a gene deletion approach. Finally, we show that the system is especially suitable when the functions of essential genes must be examined.
SummaryRho GTPases are signalling molecules regulating morphology and multiple cellular functions including metabolism and vesicular trafficking. To understand the connection between polarized growth and secretion in the industrial model organism Aspergillus niger, we investigated the function of all Rho family members in this organism. We identified six Rho GTPases in its genome and used loss-of-function studies to dissect their functions. While RhoA is crucial for polarity establishment and viability, RhoB and RhoD ensure cell wall integrity and septum formation respectively. RhoC seems to be dispensable for A. niger. RacA governs polarity maintenance via controlling actin but not microtubule dynamics, which is consistent with its localization at the hyphal apex. Both deletion and dominant activation of RacA (Rac G18V ) provoke an actin localization defect and thereby loss of polarized tip extension. Simultaneous deletion of RacA and CftA (Cdc42) is lethal; however, conditional overexpression of RacA in this strain can substitute for CftA, indicating that both proteins concertedly control actin dynamics. We finally identified NoxR as a RacA-specific effector, which however, is not important for apical dominance as reported for A. nidulans but for asexual development. Overall, the data show that individual Rho GTPases contribute differently to growth and morphogenesis within filamentous fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.