The International Union of Crystallography (IUCr) Commission on Powder Diffraction (CPD) has sponsored a round robin on the determination of quantitative phase abundance from diffraction data. The aims of the round robin have been detailed by Madsen et al. [J. Appl. Cryst. (2001), 34, 409±426]. In summary, they were (i) to document the methods and strategies commonly employed in quantitative phases analysis (QPA), especially those involving powder diffraction, (ii) to assess levels of accuracy, precision and lower limits of detection, (iii) to identify speci®c problem areas and develop practical solutions, (iv) to formulate recommended procedures for QPA using diffraction data, and (v) to create a standard set of samples for future reference. The ®rst paper (Madsen et al., 2001) covered the results of sample 1 (a simple three-phase mixture of corundum,¯uorite and zincite). The remaining samples used in the round robin covered a wide range of analytical complexity, and presented a series of different problems to the analysts. These problems included preferred orientation (sample 2), the analysis of amorphous content (sample 3), microabsorption (sample 4), complex synthetic and natural mineral suites, along with pharmaceutical mixtures with and without an amorphous component. This paper forms the second part of the round-robin study and reports the results of samples 2 (corundum,¯uorite, zincite, brucite), 3 (corundum,¯uorite, zincite, silica¯our) and 4 (corundum, magnetite, zircon), synthetic bauxite, natural granodiorite and the synthetic pharmaceutical mixtures (mannitol, nizatidine, valine, sucrose, starch). The outcomes of this second part of the round robin support the ®ndings of the initial study. The presence of increased analytical problems within these samples has only served to exacerbate the dif®culties experienced by many operators with the sample 1 suite. The major dif®culties are caused by lack of operator expertise, which becomes more apparent with these more complex samples. Some of these samples also introduced the requirement for skill and judgement in sample preparation techniques. This second part of the round robin concluded that the greatest physical obstacle to accurate QPA for X-ray based methods is the presence of absorption contrast between phases (microabsorption), which may prove to be insurmountable in some circumstances.