Although injured axons in mammalian spinal cords do not regenerate, some recovery of locomotor function following incomplete injury can be observed in patients and animal models. Following a lateral hemisection injury of the thoracic spinal cord, rats spontaneously recover weight-bearing stepping in the hind limb ipsilateral to the injury. The mechanisms behind this recovery are not completely understood. Plasticity in the reticulospinal tract (RtST), the tract responsible for the initiation of walking, has not been studied. In this study, rats received lateral thoracic hemisection of the spinal cord, and RtST projections were compared in two groups of rats, one early in recovery (7 days) and the other at a time point when weight-bearing stepping was fully regained (42 days). We found that this recovery occurs in parallel with increased numbers of collaterals of spared RtST fibers entering the intermediate lamina below the injury at L2. Sprouting of injured RtST fibers above the lesion was not found. In conclusion, our study suggests that sprouting of spared RtST fibers might be involved in the recovery of locomotion following incomplete spinal cord injury.
BackgroundElectronic documentation handling may facilitate information flows in health care settings to support better coordination of care among Health Care Providers (HCPs), but evidence is limited. Methods that accurately depict changes to the workflows of HCPs are needed to assess whether the introduction of a Critical Care clinical Information System (CCIS) to two Intensive Care Units (ICUs) represents a positive step for patient care. To evaluate a previously described method of quantifying amounts of time spent and interruptions encountered by HCPs working in two ICUs.MethodsObservers used PDAs running the Work Observation Method By Activity Timing (WOMBAT) software to record the tasks performed by HCPs in advance of the introduction of a Critical Care clinical Information System (CCIS) to quantify amounts of time spent on tasks and interruptions encountered by HCPs in ICUs.ResultsWe report the percentages of time spent on each task category, and the rates of interruptions observed for physicians, nurses, respiratory therapists, and unit clerks. Compared with previously published data from Australian hospital wards, interdisciplinary information sharing and communication in ICUs explain higher proportions of time spent on professional communication and documentation by nurses and physicians, as well as more frequent interruptions which are often followed by professional communication tasks.ConclusionsCritical care workloads include requirements for timely information sharing and communication and explain the differences we observed between the two datasets. The data presented here further validate the WOMBAT method, and support plans to compare workflows before and after the introduction of electronic documentation methods in ICUs.
The mitotic marker 5-bromodeoxyuridine (BrdU) was injected twice daily (60 mg/kg) into pregnant hooded rats on one of embryonic days (E) 11, 12, 13, 15, 17, or 21, or into rat pups on postnatal day (P) 10. The principal findings were the following: (1) BrdU exposure on E11 produces profound effects on body morphology, and animals must be fed a special diet because of chronic tooth abnormalities; (2) BrdU exposure at E17 or earlier produces a change in coat spotting pattern, the precise pattern varying with age; (3) BrdU exposure on E15 or earlier produces a reduction in both brain and body weight; (4) BrdU exposure on E17 or earlier reduces cortical thickness; (5) BrdU exposure on E11-E13 and at P10 reduces cerebellar size relative to cerebral size; (6) spatial learning is significantly affected after injections of BrdU at E11-E17, but the largest effect is on E17; (7) the deficit in spatial learning may be related in part to a reduction in visual acuity; and (8) skilled forelimb ability is most disrupted after BrdU exposure at E15 but is also impaired after injections on E13 or earlier. BrdU thus has teratological effects on body, brain, and behavior that vary with the developmental age of the fetus or infant.
Background Although electronic medical record (EMR)-tethered patient portals are common in other countries, they are still emerging in Canada. Objective We aimed to report user satisfaction and the effects of a patient portal on medical appointment attendance in a Canadian cohort of patients within our publicly funded health care system. Methods Two surveys were deployed, via email, at 2 weeks and 6 months following the first recorded patient portal access. Database audits of visit attendance were used to supplement and cross reference survey data. Results Between January 2016 and July 2018, 4296 patients accessed the patient portal. During the study, 28% (957/3421) consented patient portal users responded to one or more semistructured electronic surveys. Of respondents, 93% (891/957) reported that the patient portal was easy to use, 51% (492/975) reported it saved time when scheduling an appointment, and 40% (382/957) reported that they had to repeat themselves less during appointments. Respondents reported patient portal–related changes in health system use, with 48% (462/957) reporting avoiding a clinic visit and 2.7% (26/957) avoiding an emergency department visit. Across 19,968 visits in clinics where the patient portal was introduced, missed appointments were recorded in 9.5% (858/9021) of non–patient portal user visits, compared with 4.5% (493/9021) for patient portal users, representing a 53% relative reduction in no-show rates. Conclusions Early experience with an EMR-tethered patient portal showed strong reports of positive patient experience, a self-reported decrease in health system use, and a measured decrease in missed appointment rates. Implications on the expanded use of patient portals requires more quantitative and qualitative study in Canada.
The characteristic locomotor disturbances of Parkinson's disease (PD) include shuffling gait, short steps and low walking velocity. In this study we investigated features of walking and turning in a rat model of PD caused by unilateral infusion of the neurotoxin 6-hydroxydopamine (6-OHDA). We assessed gait and electromyographic (EMG) patterns of the ankle flexor tibialis anterior and the knee extensor vastus lateralis of the hindlimb, and triceps brachii of the forelimb, during overground locomotion, spontaneous rotation (turning) and apomorphine-induced rotation. When compared with control rats, rats with unilateral dopamine depletion displayed a shuffling gait and short stride lengths. This locomotor pattern was accompanied by prolonged ankle flexor activity on the ipsilateral side, and prolonged activity of knee extensors on the contralateral side. The dopamine depletion also led to enhanced contraversive rotations after an apomorphine challenge. The EMG recordings during drug-induced rotation suggested that hindlimb stepping was a reflective response to an active drive produced by forelimbs. The EMG recordings of the contralateral side during rotation were marked by reduced ankle flexor activity and increased knee extensor activity. Furthermore, EMG recordings indicated that dopamine-agonists induce rotational bias by altering the coupling between ipsi- and contralateral hindlimbs, and between forelimbs. In straight walking, however, the gait of 6-OHDA lesion animals reflected normal, coupled hindlimb stepping as controlled by spinal pattern generators. The data suggest that the unilateral rat model of PD resembles key features of human parkinsonian gait, and that asymmetric descending input may underlie the observed changes in gait patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.