To explore the role of protein kinase A (PKA) in the late phase of long-term potentiation (L-LTP) and memory, we generated transgenic mice that express R(AB), an inhibitory form of the regulatory subunit of PKA, only in the hippocampus and other forebrain regions by using the promoter from the gene encoding Ca2+/ calmodulin protein kinase IIalpha. In these R(AB) transgenic mice, hippocampal PKA activity was reduced, and L-LTP was significantly decreased in area CA1, without affecting basal synaptic transmission or the early phase of LTP. Moreover, the L-LTP deficit was paralleled by behavioral deficits in spatial memory and in long-term but not short-term memory for contextual fear conditioning. These deficits in long-term memory were similar to those produced by protein synthesis inhibition. Thus, PKA plays a critical role in the consolidation of long-term memory.
Extinction of conditioned fear is an important model both of inhibitory learning and of behavior therapy for human anxiety disorders. Like other forms of learning, extinction learning is long-lasting and depends on regulated gene expression. Epigenetic mechanisms make an important contribution to persistent changes in gene expression; therefore, in these studies, we have investigated whether epigenetic regulation of gene expression contributes to fear extinction. Since brain-derived neurotrophic factor (BDNF) is crucial for synaptic plasticity and for the maintenance of long-term memory, we examined histone modifications around two BDNF gene promoters after extinction of cued fear, as potential targets of learning-induced epigenetic regulation of gene expression. Valproic acid (VPA), used for some time as an anticonvulsant and a mood stabilizer, modulates the expression of BDNF, and is a histone deacetylase (HDAC) inhibitor. Here, we report that extinction of conditioned fear is accompanied by a significant increase in histone H4 acetylation around the BDNF P4 gene promoter and increases in BDNF exon I and IV mRNA expression in prefrontal cortex, that VPA enhances long-term memory for extinction because of its HDAC inhibitor effects, and that VPA potentiates the effect of weak extinction training on histone H4 acetylation around both the BDNF P1 and P4 gene promoters and on BDNF exon IV mRNA expression. These results suggest a relationship between histone H4 modification, epigenetic regulation of BDNF gene expression, and long-term memory for extinction of conditioned fear. In addition, they suggest that HDAC inhibitors may become a useful pharmacological adjunct to psychotherapy for human anxiety disorders.Substantial evidence indicates that extinction of conditioned fear, the reduction in responding to a feared cue when the cue is repeatedly presented without any adverse consequence, is new learning that inhibits the expression of a conditioned association rather than erasing it. For example, conditioned fear shows "spontaneous recovery" after the passage of time (Baum 1988), "reinstatement" after presentations of the unconditioned stimulus (US) alone (Rescorla and Heth 1975), and "renewal" when the feared cue is presented in a context different from that of extinction training (Bouton and King 1983). Efforts to understand the mechanisms of this form of learning have increased recently, particularly since it is an important model of anxiety disorder treatment.Many forms of learning, including extinction, are dependent on changes in gene expression ( . Dynamic changes in chromatin structure make an important contribution to the regulation of tissue-specific gene expression. In particular, histone acetylation/deacetylation and dimethylation of specific lysine residues on nucleosomal histone proteins (i.e., H3-K9) and DNA methylation of CpG dinucleotides within promoter regions are ways that chromatin remodeling can influence ongoing transcription and synaptic plasticity (Martinowich et al. 2003;Levenson et al. 2...
Long-term facilitation of the sensory to motor synapse in Aplysia requires gene expression. While some transcription factors involved in long-term facilitation are phosphorylated by PKA, others lack PKA sites but contain MAP Kinase (MAPK) phosphorylation sites. We now show that MAPK translocates into the nucleus of the presynaptic but not the postsynaptic cell during 5-HT-induced long-term facilitation. The presynaptic nuclear translocation of MAPK is also triggered by elevations in intracellular cAMP. Injection of anti-MAPK antibodies or of MAPK Kinase inhibitors into the presynaptic cell blocks long-term facilitation, without affecting basal synaptic transmission or short-term facilitation. Thus, MAPK appears to be specifically recruited and necessary for the long-term form of facilitation. This mechanism for long-term plasticity may be quite general: cAMP also activated MAPK in mouse hippocampal neurons, suggesting that MAPK may play a role in hippocampal long-term potentiation.
To study the physiological and molecular mechanisms of age-related memory loss, we assessed spatial memory in C57BL/B6 mice from different age cohorts and then measured in vitro the late phase of hippocampal longterm potentiation (L-LTP). Most young mice acquired the spatial task, whereas only a minority of aged mice did. Aged mice not only made significantly more errors but also exhibited greater individual differences. Slices from the hippocampus of aged mice exhibited significantly reduced L-LTP, and this was significantly and negatively correlated with errors in memory. Because L-LTP depends on cAMP activation, we examined whether drugs that enhanced cAMP would attenuate the L-LTP and memory defects. Both dopamine D1/D5 receptor agonists, which are positively coupled to adenylyl cyclase, and a cAMP phosphodiesterase inhibitor ameliorated the physiological as well as the memory defects, consistent with the idea that a cAMP-protein kinase A-dependent signaling pathway is defective in age-related spatial memory loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.