Secondary drug resistance stems from dynamic clonal evolution during the development of a prior primary resistance. This collateral type of resistance is often a characteristic of cancer recurrence. Yet, mechanisms that drive this collateral resistance and their drug-specific trajectories are still poorly understood. Using resistance selection and small-scale pharmacological screens, we find that cancer cells with primary acquired resistance to the microtubule-stabilizing drug paclitaxel often develop tolerance to epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR-TKIs), leading to formation of more stable resistant cell populations. We show that paclitaxel-resistant cancer cells follow distinct selection paths under EGFR-TKIs by enriching the stemness program, developing a highly glycolytic adaptive stress response, and rewiring an apoptosis control pathway. Collectively, our work demonstrates the alterations in cellular state stemming from paclitaxel failure that result in collateral resistance to EGFR-TKIs and points to new exploitable vulnerabilities during resistance evolution in the second-line treatment setting.
Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the profuse development of multidrug resistance in cancer.
Paraoxonase-1 (PON1) gene polymorphisms have been closely associated with the development of advanced cancers while PON1 secretion to the serum is linked with inhibition of oxidized high-density lipoprotein by its antioxidative function. Our group previously demonstrated that post-translational modification of serum PON1 in form of fucosylated PON1 is a potential biomarker of small cell lung cancer. Here, we interrogated the role of PON1 in the pathobiology of lung cancer (LC) by addressing cell-autonomous mechanisms using gain-of-function and loss-of-function approaches and protein expression profiling of tissue samples in our clinical biobank. PON1 expression in LC patient tissues varied between overexpression in squamous cell carcinoma and minimal loss in adenocarcinoma sub-types. Simultaneous overexpression of PON1 both at the gene and protein stability levels induced pro-oncogenic characteristics in LC cells and xenografts. PON1 overexpression supported metastatic progression of LC by decreasing G1/S ratio and LC cell senescence involving p21Waf1/Cip1. PON1 suppressed drug- and ligand-induced cell death and protected LC cells from genotoxic damages with maintained ATP levels, requiring p53-directed signals. PON1 promoted ROS deregulation protecting the mitochondria from dysregulation. PON1 knockdown resulted in the blockage of its antioxidant function in LC cells through Akt signaling with reduced invasive signature as a consequence of scant expression. Targeted glycolysis stimulated PON1 antioxidant activity regulating phosphorylation of AMPK-α. The functional data imply that exploitation of the antioxidative function of PON1 is consequential in driving LC pathogenesis at the cell-autonomous mechanistic level with consequences on tumor growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.