Bluetongue virus (BTV), an insect-vectored emerging pathogen of both wild ruminants and livestock, has had a severe economic impact in agriculture in many parts of the world. The investigation of BTV replication and pathogenesis has been hampered by the lack of a reverse genetics system. Recovery of infectious BTV is possible by the transfection of permissive cells with the complete set of 10 purified viral mRNAs derived in vitro from transcribing cores (M. Boyce and P. Roy, J. Virol. 81:2179-2186, 2007). Here, we report that in vitro synthesized T7 transcripts, derived from cDNA clones, can be introduced into the genome of BTV using a mixture of T7 transcripts and core-derived mRNAs. The replacement of genome segment 10 and the simultaneous replacement of segments 2 and 5 encoding the two immunologically important outer capsid proteins, VP2 and VP5, are described. Further, we demonstrate the recovery of infectious BTV entirely from T7 transcripts, proving that synthetic transcripts synthesized in the presence of cap analogue can functionally substitute for viral transcripts at all stages of the BTV replication cycle. The generation of BTV with a fully defined genome permits the recovery of mutations in a defined genetic background. The ability to generate specific mutants provides a new tool to investigate the BTV replication cycle as well as permitting the generation of designer vaccine strains, which are greatly needed in many countries.
Bluetongue virus (BTV) is transmitted by blood-feeding insects (Culicoides sp.) and causes hemorrhagic diseases in livestock. BTV is a nonenveloped, double-stranded RNA (dsRNA) virus with two capsids: a well-studied, stable core enclosing the dsRNA genome and a highly unstable, poorly studied coat responsible for host cell attachment and entry. Here, based on cryo-electron microscopy (cryoEM), we report a 7-Å resolution structure of the infectious BTV virion, including the coat proteins. We show that unlike other dsRNA viruses, the VP2 attachment trimer has a triskelion shape composed of three tip domains branching from a central hub domain. We identify three putative sialic acid-binding pockets in the hub and present supporting biochemical data indicating sugar moiety binding is important for BTV infection. Despite being a nonenveloped virus, the putative VP5 membrane penetration trimer, located slightly inward of the VP2 attachment trimer, has a central coiled-coil α-helical bundle, similar to the fusion proteins of many enveloped viruses (e.g., HIV, herpesviruses, vesicular stomatitis virus, and influenza virus). Moreover, mapping of the amino acid sequence of VP5 to the secondary structural elements identified by cryoEM locates 15 amphipathic α-helical regions on the external surface of each VP5 trimer. The cryoEM density map also reveals few, weak interactions between the VP5 trimer and both the outer-coat VP2 trimer and the underlying core VP7 trimer, suggesting that the surface of VP5 could unfurl like an umbrella during penetration and shedding of the coat to release the transcriptionally active core particle.cryo-electron microscopy | dsRNA virus structure | membrane penetration protein | sialic acid-binding protein B luetongue virus (BTV) is a segmented double-stranded RNA (dsRNA) virus in the Orbivirus genus of the Reoviridae family. It infects both ruminants and blood-feeding insects of the Culicoides genus that vector the virus between ruminant hosts. BTV has recently emerged in European countries with severe economic consequences (1, 2), possibly due to climate change and the increased distribution of insect vectors (3).The virus has four major structural proteins, two (VP2 and VP5) in the coat and two (VP3 and VP7) in the core. The virus also contains an RNA polymerase (4), a helicase (5), an mRNA capping enzyme (6), and the genome composed of 10 linear dsRNA molecules (7). In contrast to other members of the Reoviridae family, the coat of BTV is highly fragile. Upon entry into the cytoplasm, the unstable BTV coat is shed to release a stable core particle. High-resolution structures (3.5 Å) (8) are therefore available for the two core proteins, but only low-resolution structures (24 Å) (9) exist for the proteins that make up the unstable coat and that mediate attachment (10) and entry (11). Although the low-resolution structure places coat proteins VP2 and VP5 in sites consistent with their functions-VP2 (attachment) protruding outward and VP5 (membrane penetration) in a slightly more inward locat...
The reverse genetics technology for bluetongue virus (BTV) has been used in combination with complementing cell lines to recover defective BTV-1 mutants. To generate a potential disabled infectious single cycle (DISC) vaccine strain, we used a reverse genetics system to rescue defective virus strains with large deletions in an essential BTV gene that encodes the VP6 protein (segment S9) of the internal core. Four VP6-deficient BTV-1 mutants were generated by using a complementing cell line that provided the VP6 protein in trans. Characterization of the growth properties of mutant viruses showed that each mutant has the necessary characteristics for a potential vaccine strain: (i) viral protein expression in noncomplementing mammalian cells, (ii) no infectious virus generated in noncomplementing cells, and (iii) efficient replication in the complementing VP6 cell line. Further, a defective BTV-8 strain was made by reassorting the two RNA segments that encode the two outer capsid proteins (VP2 and VP5) of a highly pathogenic BTV-8 with the remaining eight RNA segments of one of the BTV-1 DISC viruses. The protective capabilities of BTV-1 and BTV-8 DISC viruses were assessed in sheep by challenge with specific virulent strains using several assay systems. The data obtained from these studies demonstrated that the DISC viruses are highly protective and could offer a promising alternative to the currently available attenuated and killed virus vaccines and are also compliant as DIVA (differentiating infected from vaccinated animals) vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.