Abstract. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), ground-based measurements obtained from the Jet Propulsion Laboratory (JPL) stratospheric ozone lidar and the NOAA stratospheric aerosol lidar at Mauna Loa, Hawaii, over the past 2 decades were used to investigate the impact of volcanic eruptions and pyrocumulonimbus (PyroCb) smoke plumes on the stratospheric aerosol load above Hawaii since 1999. Measurements at 355 and 532 nm conducted by these two lidars revealed a color ratio of 0.5 for background aerosols and small volcanic plumes and 0.8 for a PyroCb plume recorded on September 2017. Measurements of the Nabro plume by the JPL lidar in 2011–2012 showed a lidar ratio of (64±12.7) sr at 355 nm around the center of the plume. The new Global Space-based Stratospheric Aerosol Climatology (GloSSAC), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Level 3 and Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III-ISS) stratospheric aerosol datasets were compared to the ground-based lidar datasets. The intercomparison revealed a generally good agreement, with vertical profiles of extinction coefficient within 50 % discrepancy between 17 and 23 km above sea level (a.s.l.) and 25 % above 23 km a.s.l. The stratospheric aerosol depth derived from all of these datasets shows good agreement, with the largest discrepancy (20 %) being observed between the new CALIOP Level 3 and the other datasets. All datasets consistently reveal a relatively quiescent period between 1999 and 2006, followed by an active period of multiple eruptions (e.g., Nabro) until early 2012. Another quiescent period, with slightly higher aerosol background, lasted until mid-2017, when a combination of extensive wildfires and multiple volcanic eruptions caused a significant increase in stratospheric aerosol loading. This loading maximized at the very end of the time period considered (fall 2019) as a result of the Raikoke eruption, the plume of which ascended to 26 km altitude in less than 3 months.
Abstract. The North America-based Tropospheric Ozone Lidar Network (TOLNet) was recently established to provide high spatiotemporal vertical profiles of ozone, to better understand physical processes driving tropospheric ozone variability and to validate the tropospheric ozone measurements of upcoming spaceborne missions such as Tropospheric Emissions: Monitoring Pollution (TEMPO). The network currently comprises six tropospheric ozone lidars, four of which are mobile instruments deploying to the field a few times per year, based on campaign and science needs. In August 2016, all four mobile TOLNet lidars were brought to the fixed TOLNet site of JPL Table Mountain Facility for the 1-week-long Southern California Ozone Observation Project (SCOOP). This intercomparison campaign, which included 400 h of lidar measurements and 18 ozonesonde launches, allowed for the unprecedented simultaneous validation of five of the six TOLNet lidars. For measurements between 3 and 10 km a.s.l., a mean difference of 0.7 ppbv (1.7 %), with a root-mean-square deviation of 1.6 ppbv or 2.4 %, was found between the lidars and ozonesondes, which is well within the combined uncertainties of the two measurement techniques. The few minor differences identified were typically associated with the known limitations of the lidars at the profile altitude extremes (i.e., first 1 km above ground and at the instruments' highest retrievable altitude). As part of a large homogenization and quality control effort within the network, many aspects of the TOLNet in-house data processing algorithms were also standardized and validated. This thorough validation of both the measurements and retrievals builds confidence as to the high quality and reliability of the TOLNet ozone lidar profiles for many years to come, making TOLNet a valuable ground-based reference network for tropospheric ozone profiling.
Abstract. The North-America-based Tropospheric Ozone Lidar Network (TOLNet) was recently established to provide high spatio-temporal vertical profiles of ozone, to better understand physical processes driving tropospheric ozone variability, and to validate the tropospheric ozone measurements of upcoming space-borne missions such as Tropospheric Emissions:Monitoring Pollution (TEMPO). The network currently comprises six tropospheric ozone lidars, four of which are mobile 25 instruments deploying to the field a few times per year, based on campaign and science needs. In August 2016, all four mobile TOLNet lidars were brought to the fixed TOLNet site of JPL-Table Mountain Facility for the one-week-long Southern California Ozone Observation Project (SCOOP). This intercomparison campaign, which included 400 hours of lidar measurements and 18 ozonesondes launches, allowed for the unprecedented simultaneous validation of five of the six TOLNet lidars. For measurements between 3 and 10 km above sea level, a mean difference of 0.7 ppbv (1.7%), with a root-30 mean-square deviation of 1.6 ppbv or 2.4% was found between the lidars and ozonesondes, which is well within the combined uncertainties of the two measurement techniques. The few minor differences identified were typically associated with the known limitations of the lidars at the profiles altitude extremes (i.e., first 1 km above ground and at the instruments highest retrievable altitude). As part of a large homogenization and quality control effort within the network, many aspects of the TOLNet in-house data processing algorithms were also standardized and validated. This thorough validation of both the 35 2 measurements and retrievals builds confidence in the high quality and reliability of the TOLNet ozone lidar profiles for many years to come, making TOLNet a valuable ground-based reference network for tropospheric ozone profiling.
Abstract. As part of international efforts to monitor air quality, several satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) were deployed and others, like Tropospheric Emissions: Monitoring Pollution (TEMPO), are planned for the near future. In support of the validation of these missions, major upgrades to the tropospheric ozone lidar located at the Jet Propulsion Laboratory Table Mountain Facility (TMF) were recently performed. These modifications include the full automation of the system, which now allows unattended measurements during frequent satellite overpasses, and a new receiver that extends the measurement capabilities of the system down to 100 m above surface. The automation led to the systematic operation of the lidar during daily TROPOMI overpasses, providing more than 139 reference profiles since January 2018. Ozone profiles retrieved using the new lidar receiver were compared to ozonesonde profiles obtained from a co-located tethered balloon. An agreement of about 5 % with the ozonesonde down to an altitude range of 100 m a.g.l. was observed. Furthermore, the stability of the receiver configuration was investigated. Comparisons between the lowest point retrieved by the lidar and a co-located surface ozone photometer showed no sign of drift over a 2-month test period and an agreement better than 10 %. Finally, measurements from a 24 h intensive measurement period during a stratospheric intrusion event showed good agreement with two free-flying ozonesondes. These comparisons revealed localized differences between sonde and lidar, possibly owing to the differing vertical resolutions (between 52 and 380 m for lidar and about 100 m for the sonde).
The Terabyte Infrared Delivery (TBIRD) technology demonstration commenced operations in June 2022 following the spacecraft launch in late May 2022. The Jet Propulsion Laboratory (JPL), Optical Communications Telescope Laboratory (OCTL), 1-meter diameter telescope was instrumented to serve as the ground station for TBIRD. The instrumentation was a combination of lasers and modem electronics supplied by the Massachusetts Institute of Technology Lincoln Laboratory (MITLL) along with optics, sensors, and an existing adaptive optics (AO) system. The AO was embedded in an existing Optical Ground Station (OGS-1) setup supporting NASA’s Laser Communications Relay Demonstration (LCRD). The transmitting and receiving optics for TBIRD were “threaded” around the OGS-1 optics without breaking configuration, and facilitated easy switching between LCRD and TBIRD operations with a few motorized actuators. In this paper we describe (i) the design and deployment of the ground station; (ii) the concept of operations and (iii) demonstration results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.