We report on use of cavity ring-down spectroscopy (CRDS) as a means to detect and quantify ion sputtering of refractory metal species. CRDS measurements are made with a neodymium:YAG-pumped optical parametric oscillator laser system in the 375-400 nm region. CRDS sputtering measurements are presented for argon ions incident on iron, aluminum, molybdenum, and titanium. The measurements are based on absorption from fine-structure levels of the electronic ground-state multiplets. For each species, characteristic spectra are provided, the dependence of sputtered particle number density on the beam current is examined, measured densities are compared with a sputter model, and detection limits are determined. For iron, aluminum, and titanium we probe multiple fine-structure levels within the ground-state multiplet and obtain information on their relative populations.
We report sputtering studies of multi-component spacecraft materials. We employ two complementary diagnostic methods: weight loss measurements and cavity ringdown spectroscopy (CRDS). The weight loss measurements provide total sputter yields as a function of ion energy and incidence angle. We present sputter yields from weight loss measurements for xenon ion sputtering of molybdenum, quartz, boron nitride, and kapton. The CRDS provides species-specific sputtering data (number density and velocity) as well as information on the differential (angular) sputtering distributions. We present CRDS results for the sputtering of molybdenum (from a molybdenum sample), and demonstrate measurements of multi-component materials by measuring the sputtering of chromium, iron, and molybdenum from inconel 718.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.