To determine the effect of insulin on regional cerebral blood flow (rCBF) and glucose metabolism (CMRglu), we performed quantitative dynamic PET scanning of labeled water (H215O) and deoxyglucose (18FDG) using two protocols in 10 diabetic men. In protocol A, to test reproducibility of the technique, insulin was infused at 1.5 mU.kg-1.min-1 twice (n = 5). In protocol B, low (0.3 mU.kg-1.min-1) and high (3 mU.kg-1.min-1) dose insulin was given on separate occasions (n = 5). Euglycemia (5 mmol/L) was maintained by glucose infusion. In protocol A, CMRglu was 6% higher during the first infusion, and catecholamines were also increased, indicating stress. Blood flow was not different. Changing free insulin levels from 20.5 +/- 4.8 to 191 +/- 44.5 mU/L (P < 0.001, low versus high dose, protocol B) did not alter total or regional CMRglu (whole brain 36.6 +/- 4.0 versus 32.8 +/- 6.2 mumol.100 g-1.min-1, P = 0.32) or CBF (41.7 +/- 5.1 and 45.6 +/- 9.7 mL.100 g-1.min-1, P = 0.4) or rCBF. In cerebellum, CMRglu was lower than in cortex and the ratio between rate constants for glucose uptake and phosphorylation (K1 and k3) was reversed. There are regional differences in cerebral metabolic capacity that may explain why cerebral cortex is more sensitive to hypoglycemia than cerebellum. Brain glucose metabolism is not sensitive to insulin concentration within the physiologic range. This suggests that intracerebral insulin receptors have a different role from those in the periphery.
HIV-1 pol gene intersubtype and RC differences are associated with disease progression and may be influenced by amino acid polymorphisms.
Hemodialysis is a therapeutic procedure for replacing some functions of the natural kidney. As such, it is capable of allowing people with little or no residual kidney function to survive and in some cases to lead productive lives. There are, unfortunately, a number of side effects associated with this procedure (shock, muscle cramps, fatigue, etc.). In order to minimize these side effects, we have undertaken to model shifts of fluid between the intracellular and extracellular fluid spaces in hemodialysis patients. Fluid shifts are primarily a function of osmolality differences between these fluid spaces. Changes in osmolality are caused mainly by changes in urea and salt concentrations. Least squares analysis of patient data has been used to estimate the appropriate ultrafiltration and urea mass transfer coefficients for each patient. The model has then been used to find a dialysate sodium concentration profile that will minimize fluid shifts into and out of the intracellular fluid space.
BackgroundRecent efforts in HIV-1 vaccine design have focused on immunogens that evoke potent neutralizing antibody responses to a broad spectrum of viruses circulating worldwide. However, the development of effective vaccines will depend on the identification and characterization of the neutralizing antibodies and their epitopes. We developed bioinformatics methods to predict epitope networks and antigenic determinants using structural information, as well as corresponding genotypes and phenotypes generated by a highly sensitive and reproducible neutralization assay.282 clonal envelope sequences from a multiclade panel of HIV-1 viruses were tested in viral neutralization assays with an array of broadly neutralizing monoclonal antibodies (mAbs: b12, PG9,16, PGT121 - 128, PGT130 - 131, PGT135 - 137, PGT141 - 145, and PGV04). We correlated IC50 titers with the envelope sequences, and used this information to predict antibody epitope networks. Structural patches were defined as amino acid groups based on solvent-accessibility, radius, atomic depth, and interaction networks within 3D envelope models. We applied a boosted algorithm consisting of multiple machine-learning and statistical models to evaluate these patches as possible antibody epitope regions, evidenced by strong correlations with the neutralization response for each antibody.ResultsWe identified patch clusters with significant correlation to IC50 titers as sites that impact neutralization sensitivity and therefore are potentially part of the antibody binding sites. Predicted epitope networks were mostly located within the variable loops of the envelope glycoprotein (gp120), particularly in V1/V2. Site-directed mutagenesis experiments involving residues identified as epitope networks across multiple mAbs confirmed association of these residues with loss or gain of neutralization sensitivity.ConclusionsComputational methods were implemented to rapidly survey protein structures and predict epitope networks associated with response to individual monoclonal antibodies, which resulted in the identification and deeper understanding of immunological hotspots targeted by broadly neutralizing HIV-1 antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.