Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell-cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell-cycle entry is unknown. Here, we report the metabolic fates of [U-13 C] glucose in serum-stimulated myc À/À and myc þ / þ fibroblasts by 13 C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased 13 C labeling of ribose sugars, purines and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked N-acetylglucosamine protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing function for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its function in directing metabolic networks required for cell proliferation.
We present Swarm, a novel architecture that exploits ordered irregular parallelism, which is abundant but hard to mine with current software and hardware techniques. In this architecture, programs consist of short tasks with programmer-specified timestamps. Swarm executes tasks speculatively and out of order, and efficiently speculates thousands of tasks ahead of the earliest active task to uncover ordered parallelism. Swarm builds on prior TLS and HTM schemes, and contributes several new techniques that allow it to scale to large core counts and speculation windows, including a new execution model, speculation-aware hardware task management, selective aborts, and scalable ordered commits.We evaluate Swarm on graph analytics, simulation, and database benchmarks. At 64 cores, Swarm achieves 51-122× speedups over a single-core system, and outperforms software-only parallel algorithms by 3-18×.
Abstract-Multicore systems must exploit locality to scale, scheduling tasks to minimize data movement. While localityaware parallelism is well studied in non-speculative systems, it has received little attention in speculative systems (e.g., HTM or TLS), which hinders their scalability.We present spatial hints, a technique that leverages program knowledge to reveal and exploit locality in speculative parallel programs. A hint is an abstract integer, given when a speculative task is created, that denotes the data that the task is likely to access. We show it is easy to modify programs to convey locality through hints. We design simple hardware techniques that allow a state-of-the-art, tiled speculative architecture to exploit hints by: (i) running tasks likely to access the same data on the same tile, (ii) serializing tasks likely to conflict, and (iii) balancing tasks across tiles in a locality-aware fashion. We also show that programs can often be restructured to make hints more effective.Together, these techniques make speculative parallelism practical on large-scale systems: at 256 cores, hints achieve nearlinear scalability on nine challenging applications, improving performance over hint-oblivious scheduling by 3.3× gmean and by up to 16×. Hints also make speculation far more efficient, reducing wasted work by 6.4× and traffic by 3.5× on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.