Laboratory experiments and numerical simulations were utilized in this study to assess the impact of aquifer stratification on saltwater intrusion. Three homogeneous and six layered aquifers were investigated. Image processing algorithms facilitated the precise calculation of saltwater wedge toe length, width of the mixing zone, and angle of intrusion. It was concluded that the length of intrusion in stratified aquifers is predominantly a function of permeability contrast, total aquifer transmissivity and the number of heterogeneous layers, being positively correlated to all three. When a lower permeability layer overlays or underlays more permeable zones its mixing zone widens, while it becomes thinner for the higher permeability strata. The change in the width of the mixing zone (WMZ) is positively correlated to permeability contrast, while it applies to all strata irrespectively of their relative vertical position in the aquifer. Variations in the applied hydraulic head causes the transient widening of WMZ.These peak WMZ values are larger during saltwater retreat and are negatively correlated to the layer's permeability and distance from the aquifer's bottom. Moreover, steeper angles of intrusion are observed in cases where low permeability layers overlay more permeable strata, and milder ones in the inverse aquifer setups. The presence of a low permeability upper layer results in the confinement of the saltwater wedge in the lower part of the stratified aquifer. This occurs until a critical hydraulic head difference is applied to the system. This hydraulic gradient value was found to be a function of layer width and permeability contrast alike.
Deriving saltwater concentrations from the light intensity values of dyed saline solutions is a long-established image processing practice in laboratory scale investigations of saline intrusion. The current paper presents a novel methodology that employs the predictive ability of machine learning algorithms in order to determine saltwater concentration fields. The proposed approach consists of three distinct parts, image pre-processing, porous medium classification (glass bead structure recognition) and saltwater field generation (regression). It minimizes the need for aquifer-specific calibrations, significantly shortening the experimental procedure by up to 50% of the time required. A series of typical saline intrusion experiments were conducted in homogeneous and heterogeneous aquifers, consisting of glass beads of varying sizes, to recreate the necessary laboratory data. An innovative method of distinguishing and filtering out the common experimental error introduced by both backlighting and the optical irregularities of the glass bead medium was formulated. This enabled the acquisition of quality predictions by classical, easy-to-use machine learning techniques, such as feedforward Artificial Neural Networks, using a limited amount of training data, proving the applicability of the procedure. The new process was benchmarked against a traditional regression algorithm. A series of variables were utilized to quantify the variance between the results generated by the two procedures. No compromise was found to the quality of the derived concentration fields and it was established that the proposed image processing technique is robust when applied to homogeneous and heterogeneous domains alike, outperforming the classical approach in all test cases. Moreover, the method minimized the impact of experimental errors introduced by small movements of the camera and the presence air bubbles trapped in the porous medium.
Tidal forcing influences groundwater flow and salt distribution in shallow coastal aquifers, with the interaction between sea level variations and geology proving fundamental for assessing the risk of seawater intrusion (SI). Constraining the relative importance of each is often confounded by the influences of groundwater abstraction and geological heterogeneity, with understanding of the latter often restricted by sampling point availability and poor spatial resolution. This paper describes the application of geophysical and geotechnical methods to better characterize groundwater salinity patterns in a tidally dominated ~ 20 m thick sequence of beach sand, unaffected by groundwater abstraction. Electrical resistivity tomography (ERT) revealed the deposit to consist of an upper wedge of low resistivity (< 3 Ωm), reaching over 8 m thick in the vicinity of the low water mark, overlying a higher resistivity unit. Cone penetrometer testing (CPT), and associated high-resolution hydraulic profiling tool system (HPT), coupled with water quality sampling, revealed the wedge to reflect an intertidal recirculation cell (IRC), which restricts freshwater discharge from a relatively homogeneous sand unit to a zone of seepage within the IRC. The application of CPT and HPT techniques underscored the value of geotechnical methods in distinguishing between geological and water quality contributions to geophysical responses. Survey results have permitted a clear characterization of the groundwater flow regime in a coastal aquifer with an IRC, highlighting the benefit of combining geophysical and geotechnical methods to better characterize shallow SI mechanisms and groundwater flow in coastal hydrogeological environments.
This study investigated the saltwater upconing mechanism in fractured coastal aquifers. Head-induced saline intrusion was initiated into three narrow sandbox aquifers containing individual horizontal discontinuities placed on different positions. Subsequently, using a peristaltic pump, freshwater was abstracted from the aquifers’ center, triggering saltwater upconing. Progressively larger pumping rates were applied until critical conditions, resulting in the wells’ salinization, were achieved. Advanced image analysis algorithms were utilized to recreate the saltwater concentration fields and quantify the extent of the saline wedges with a high accuracy. A numerical model was successfully employed to simulate the laboratory results and conduct a comprehensive sensitivity analysis, further expanding the findings of this investigation. The impact of the fractures’ length, permeability and position on the upconing mechanism was identified. It was established that the presence of high permeability discontinuities significantly affected aquifer hydrodynamics. The conclusions of this study could constitute a contribution towards the successful management of real-world fractured coastal aquifers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.