The Boudouard reaction, which is the reaction of carbon and carbon dioxide to produce carbon monoxide, represents a simple and straightforward method for the remediation of carbon dioxide in the environment through reduction: CO 2 (g) + C(s) ⇌ 2CO. However, due to the large positive enthalpy, typically reported to be 172 kJ/mol under standard conditions at 298 K, the equilibrium does not favor CO production until temperatures >700 °C, when the entropic term, −TΔS, begins to dominate and the free energy becomes negative. We have found that, under microwave irradiation to selectively heat the carbon, dramatically different thermodynamics for the reaction are observed. During kinetic studies of the reaction under conditions of flowing CO 2 , the apparent activation energy dropped from 118.4 kJ/mol under conventional convective heating to 38.5 kJ/mol under microwave irradiation. From measurement of the equilibrium constants as a function of temperature, the enthalpy of the reaction dropped from 183.3 kJ/mol at ∼1100 K to 33.4 kJ/mol at the same temperature under microwave irradiation. This changes the position of the equilibrium so that the temperature at which CO becomes the major product drops from 643 °C in the conventional thermal reaction to 213 °C in the microwave. The observed reduction in the apparent enthalpy of the microwave driven reaction, compared to what is determined for the thermal reaction from standard heats of formation, can be thought of as arising from additional energy being put into the carbon by the microwaves, effectively increasing its apparent standard enthalpy. Mechanistically, it is hypothesized that the enhanced reactivity arises from the interaction of CO 2 with the steady-state concentration of electron−hole pairs that are present at the surface of the carbon due to the space-charge mechanism, by which microwaves are known to heat carbon. Such a mechanism is unique to microwave-induced heating and, given the effect it has on the thermodynamics of the Boudouard reaction, suggests that its use may yield energy savings in driving the general class of gas−carbon reactions.
Extracts of the plant Echinacea purpurea are widely used for medicinal purposes. Effective quality control of these extracts requires rapid methods to determine their chemical composition. A new method for analysis of caffeic acid derivatives and alkamides from Echinacea extracts has been developed. With this method, isomeric isobutylamides and 2-methylbutylamides can be distinguished, a capability that previously published methods have lacked. Quantitative analyses carried out with this method on E. purpurea extracts that have been stored for 18 months indicate that they contain caftaric acid, cichoric acid, and undeca-2Z,4E-diene-8,10-diynoic acid isobutylamide at concentrations of 0.7, 0.71 and 2.0mg/mL, respectively.
The structure and mechanism of the formation of sites which initiate ethylene polymerization in the atomically dispersed Phillips catalyst (Cr/ SiO 2 ) are two of the great unsolved mysteries of heterogeneous catalysis. After CO or C 2 H 4 reduction of silica-supported Cr VI ions to Cr II ions in the precatalyst, exposure to ethylene results in the formation of organoCr III sites that are capable of initiating polymerization without recourse to an external alkylating cocatalyst. In this work, a Phillips catalyst prepared, via sol−gel chemistry, as a mesoporous, optically transparent monolith was reduced with CO to the spectroscopically determined Cr II end point. Ethylene causes rapid reoxidation of these Cr II sites to Cr III , even at low temperatures. Solid-state 13 C CP-MAS NMR, IR, and Raman spectroscopies reveal that the resulting sites contain a vinyl ligand, described as (≡SiO) 2 Cr III −CHCH 2 although likely with a higher coordination number, which are capable of initiating polymerization. The formation of these vinyl sites is an incommensurate redox reaction involving one-electron oxidation of Cr II via ethylene disproportionation. The accompanying formation of organic radical intermediates and their characteristic reaction products suggest that the key step is homolysis of a Cr−ethyl bond. Plausible pathways for the initiation mechanism are suggested.
In this work, we investigate the stability of penicillin G in various conditions including acidic, alkaline, natural acidic matrices and after treatment of citrus trees that are infected with citrus greening disease. The identification, confirmation, and quantitation of penicillin G and its various metabolites were evaluated using two UHPLC-MS/MS systems with variable capabilities (i.e., Thermo Q Exactive Orbitrap and Sciex 6500 QTrap). Our data show that under acidic and alkaline conditions, penicillin G at 100 ng/mL degrades quickly, with a determined half-life time of approximately 2 h. Penillic acid, penicilloic acid, and penilloic acid are found to be the most abundant metabolites of penicillin G. These major metabolites, along with isopenillic acid, are found when penicillin G is used for treatment of citrus greening infected trees. The findings of this study will provide insight regarding penicillin G residues in agricultural and biological applications.
A series of heterogeneous catalyst materials possessing good microwave absorption properties were investigated for their activity as oxidation catalysts under microwave irradiation. These catalysts, a series of nanoscale magnetic spinel oxides of the composition MCr2O4 (M = Cu, Co, Fe), were irradiated in aqueous methanol solution (1:1 MeOH:H2O v:v). This resulted in rapid conversion of methanol to formaldehyde, directly generating aqueous formalin solutions. The catalytic reaction occurred under relatively mild conditions (1 atm O2, 60 °C), with irradiation times of 80 min converting 24.5%, 17.7%, and 13.2% of the available methanol to formaldehyde by the Cu, Fe, and Co chromite spinel catalysts, respectively. Importantly, reactions run under identical conditions of concentration, time, and temperature using traditional convective heating yielded dramatically lower amounts of conversions; specifically, 1.0% and 0.21% conversions were observed with Cu and Co spinels, and no observable thermal products were obtained from the Fe spinels. This work provides a clear demonstration that microwave-driven catalysis can yield enhanced reactivity and can afford new catalytic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.