The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR ®) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s −1 argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 × 10 20 m −3 and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 10 4 to 10 5 λ De depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 10 15 m −3 and 2 × 10 −5 Torr, respectively, in a 150 m 3 vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.
A high density ( 10 19 m −3 ) hydrogen plasma has been sustained successfully in axially non-uniform static magnetic field configurations for frequencies both above and below the high density limit of the lower hybrid resonance frequency (LH-HD). Wave field measurements suggest several modes are coupling to generate these helicon plasmas. The dependence of the plasma density on the static magnetic field strength for a fixed geometry can be explained by waves, with wavelength close to the antenna length, that couple to the fundamental radial mode for frequencies below the LH-HD frequency and to the second radial mode for frequencies above the LH-HD frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.