Morphological alterations have been shown to occur in Drosophila melanogaster when function of Hsp90 (heat shock 90-kDa protein 1alpha, encoded by Hsp83) is compromised during development. Genetic selection maintains the altered phenotypes in subsequent generations. Recent experiments have shown, however, that phenotypic variation still occurs in nearly isogenic recombinant inbred strains of Arabidopsis thaliana. Using a sensitized isogenic D. melanogaster strain, iso-Kr(If-1), we confirm this finding and present evidence supporting an epigenetic mechanism for Hsp90's capacitor function, whereby reduced activity of Hsp90 induces a heritably altered chromatin state. The altered chromatin state is evidenced by ectopic expression of the morphogen wingless in eye imaginal discs and a corresponding abnormal eye phenotype, both of which are epigenetically heritable in subsequent generations, even when function of Hsp90 is restored. Mutations in nine different genes of the trithorax group that encode chromatin-remodeling proteins also induce the abnormal phenotype. These findings suggest that Hsp90 acts as a capacitor for morphological evolution through epigenetic and genetic mechanisms.
BackgroundPrevious whole-genome shotgun bisulfite sequencing experiments showed that DNA cytosine methylation in the honey bee (Apis mellifera) is almost exclusively at CG dinucleotides in exons. However, the most commonly used method, bisulfite sequencing, cannot distinguish 5-methylcytosine from 5-hydroxymethylcytosine, an oxidized form of 5-methylcytosine that is catalyzed by the TET family of dioxygenases. Furthermore, some analysis software programs under-represent non-CG DNA methylation and hydryoxymethylation for a variety of reasons. Therefore, we used an unbiased analysis of bisulfite sequencing data combined with molecular and bioinformatics approaches to distinguish 5-methylcytosine from 5-hydroxymethylcytosine. By doing this, we have performed the first whole genome analyses of DNA modifications at non-CG sites in honey bees and correlated the effects of these DNA modifications on gene expression and alternative mRNA splicing.ResultsWe confirmed, using unbiased analyses of whole-genome shotgun bisulfite sequencing (BS-seq) data, with both new data and published data, the previous finding that CG DNA methylation is enriched in exons in honey bees. However, we also found evidence that cytosine methylation and hydroxymethylation at non-CG sites is enriched in introns. Using antibodies against 5-hydroxmethylcytosine, we confirmed that DNA hydroxymethylation at non-CG sites is enriched in introns. Additionally, using a new technique, Pvu-seq (which employs the enzyme PvuRts1l to digest DNA at 5-hydroxymethylcytosine sites followed by next-generation DNA sequencing), we further confirmed that hydroxymethylation is enriched in introns at non-CG sites.ConclusionsCytosine hydroxymethylation at non-CG sites might have more functional significance than previously appreciated, and in honey bees these modifications might be related to the regulation of alternative mRNA splicing by defining the locations of the introns.
Hsp90 is a chaperone for over 100 'client proteins' in the cell, most of which are involved in signaling pathways. For example, Hsp90 maintains several nuclear hormone receptors, such as the estrogen receptor (ER), as agonist-receptive monomers in the cytoplasm. In the presence of agonist, Hsp90 dissociates and the receptors dimerize, enter the nucleus and ultimately activate transcription of the target genes. Increasing evidence suggests that Hsp90 also has a role in modifying the chromatin conformation of many genes. For example, Hsp90 has recently been shown to increase the activity of the histone H3 lysine-4 methyltransferase SMYD3, which activates the chromatin of target genes. Further evidence for chromatin-remodeling functions is that Hsp90 acts as a capacitor for morphological evolution by masking epigenetic variation. Release of the capacitor function of Hsp90, such as by environmental stress or by drugs that inhibit the ATP-binding activity of Hsp90, exposes previously hidden morphological phenotypes in the next generation and for several generations thereafter. The chromatin-modifying phenotypes of Hsp90 have striking similarities to the trans-generational effects of the ER agonist diethylstilbesterol (DES). Prenatal and perinatal exposure to DES increases the predisposition to uterine developmental abnormalities and cancer in the daughters and granddaughters of exposed pregnant mice. In this review, we propose that trans-generational epigenetic phenomena involving Hsp90 and DES are related and that chromatin-mediated WNT signaling modifications are required. This model suggests that inhibitors of Hsp90, WNT signaling and chromatin-remodeling enzymes might function as anticancer agents by interfering with epigenetic reprogramming and canalization in cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.