The cell adhesion glycoprotein E-cadherin (CDH1) is commonly inactivated in breast tumors. Precision medicine approaches that exploit this characteristic are not available. Using perturbation screens in breast tumor cells with CRISPR/Cas9-engineered mutations, we identified synthetic lethality between E-cadherin deficiency and inhibition of the tyrosine kinase ROS1. Data from large-scale genetic screens in molecularly diverse breast tumor cell lines established that the E-cadherin/ROS1 synthetic lethality was not only robust in the face of considerable molecular heterogeneity but was also elicited with clinical ROS1 inhibitors, including foretinib and crizotinib. ROS1 inhibitors induced mitotic abnormalities and multinucleation in E-cadherin-defective cells, phenotypes associated with a defect in cytokinesis and aberrant p120 catenin phosphorylation and localization., ROS1 inhibitors produced profound antitumor effects in multiple models of E-cadherin-defective breast cancer. These data therefore provide the preclinical rationale for assessing ROS1 inhibitors, such as the licensed drug crizotinib, in appropriately stratified patients. E-cadherin defects are common in breast cancer but are currently not targeted with a precision medicine approach. Our preclinical data indicate that licensed ROS1 inhibitors, including crizotinib, should be repurposed to target E-cadherin-defective breast cancers, thus providing the rationale for the assessment of these agents in molecularly stratified phase II clinical trials. .
The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition.
Progression through mitosis and cytokinesis requires the sequential proteolysis of several cell-cycle regulators. This proteolysis is mediated by the ubiquitin-proteasome system, with the E3 ligase being the anaphase-promoting complex, also known as the cyclosome (APC/C). The APC/C is regulated by two activators, namely Cdc20 and Cdh1. The current view is that prior to anaphase, the APC/C is activated by Cdc20, but that following anaphase, APC/C switches to Cdh1-dependent activation. However, here we present an analysis of the kinetochore protein Cenp-F that is inconsistent with this notion. Although it has long been appreciated that Cenp-F is degraded sometime during or after mitosis, exactly when and how has not been clear. Here we show that degradation of Cenp-F initiates about six minutes after anaphase, and that this is dependent on a C-terminal KEN-box. Although these two observations are consistent with Cenp-F being a substrate of Cdh1-activated APC/C, Cenp-F is degraded normally in Cdh1-null cells. By contrast, RNAi-mediated repression of APC/C subunits or Cdc20 does inhibit Cenp-F degradation. These findings therefore suggest that the APC/C does not simply ‘switch’ upon anaphase onset; rather, our observations indicate that Cdc20 also contributes to post-anaphase activation of the APC/C. We also show that the post-anaphase, KEN-box-dependent degradation of Cenp-F requires it to be farnesylated, a post-translational modification usually linked to membrane association. Because so many of the behaviours of Cenp-F are farnesylation-dependent, we suggest that this modification plays a more global role in Cenp-F function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.