The atheroprotective effects of estrogen in women are well recognized, but the underlying mechanisms responsible are not well understood. Blood vessel cells express the classic estrogen receptor, ER alpha (ref. 2-6), and are directly affected by estrogen, which inhibits the development of atherosclerotic and injury-induced vascular lesions. We have generated mice in which the ER alpha gene is disrupted and have used a mouse model of carotid arterial injury to compare the effects of estrogen on wild-type and estrogen receptor-deficient mice. Increases in vascular medial area and smooth muscle cell proliferation were quantified following vascular injury in ovariectomized mice treated with vehicle or with physiologic levels of 17 beta-estradiol. Surprisingly, in both wild-type and estrogen receptor-deficient mice, 17 beta-estradiol markedly inhibited to the same degree all measures of vascular injury. These data demonstrate that estrogen inhibits vascular by a novel mechanism that is independent of the classic estrogen receptor, ER alpha.
Abstract-Cells of the innate immune system use Toll-like receptors (TLRs) to initiate the proinflammatory response to microbial infection. Recent studies have shown acute infections are associated with a transient increase in the risk of vascular thrombotic events. Although platelets play a central role in acute thrombosis and accumulating evidence demonstrates their role in inflammation and innate immunity, investigations into the expression and functionality of platelet TLRs have been limited. In the present study, we demonstrate that human platelets express TLR2, TLR1, and TLR6. Incubation of isolated platelets with Pam 3 CSK4, a synthetic TLR2/TLR1 agonist, directly induced platelet aggregation and adhesion to collagen. These functional responses were inhibited in TLR2-deficient mice and, in human platelets, by pretreatment with TLR2-blocking antibody. Stimulation of platelet TLR2 also increased P-selectin surface expression, activation of integrin ␣ IIb  3 , generation of reactive oxygen species, and, in human whole blood, formation of platelet-neutrophil heterotypic aggregates. TLR2 stimulation also activated the phosphoinositide 3-kinase (PI3-K)/ Akt signaling pathway in platelets, and inhibition of PI3-K significantly reduced Pam 3 CSK4-induced platelet responses. In vivo challenge with live Porphyromonas gingivalis, a Gram-negative pathogenic bacterium that uses TLR2 for innate immune signaling, also induced significant formation of platelet-neutrophil aggregates in wild-type but not TLR2-deficient mice. Together, these data provide the first demonstration that human platelets express functional TLR2 capable of recognizing bacterial components and activating the platelet thrombotic and/or inflammatory pathways. This work substantiates the role of platelets in the immune and inflammatory response and suggests a mechanism by which bacteria could directly activate platelets.
Background-Moderate red wine consumption is inversely associated with coronary ischemia, and both red wine and purple grape juice (PGJ) contain flavonoids with antioxidant and antiplatelet properties believed to be protective against cardiovascular events. Acute cardiac events are also associated with decreased platelet-derived nitric oxide (NO) release. In this study, the effects of PGJ and PGJ-derived flavonoids on platelet function and platelet NO production were determined. Methods and Results-Incubation of platelets with dilute PGJ led to inhibition of aggregation, enhanced release of platelet-derived NO, and decreased superoxide production. To confirm the in vivo relevance of these findings, 20 healthy subjects consumed 7 mL · kg Ϫ1 · d Ϫ1 of PGJ for 14 days. Platelet aggregation was inhibited after PGJ supplementation, platelet-derived NO production increased from 3.5Ϯ1.2 to 6.0Ϯ1.5 pmol/10 8 platelets, and superoxide release decreased from 29.5Ϯ5.0 to 19.2Ϯ3.1 arbitrary units (PϽ0.007 and PϽ0.05, respectively). ␣-Tocopherol levels increased significantly after PGJ consumption (from 15.6Ϯ0.7 to 17.6Ϯ0.9 mol/L; PϽ0.009), and the plasma protein-independent antioxidant activity increased by 50.0% (PϽ0.05). Last, incubation of platelets with select flavonoid fractions isolated from PGJ consistently attenuated superoxide levels but had variable effects on whole-blood aggregation, platelet aggregation, and NO release. Conclusions-Both in vitro incubation and oral supplementation with PGJ decrease platelet aggregation, increase platelet-derived NO release, and decrease superoxide production. These findings may be a result of antioxidant-sparing and/or direct effects of select flavonoids found in PGJ. The suppression of platelet-mediated thrombosis represents a potential mechanism for the beneficial effects of purple grape products, independent of alcohol consumption, in cardiovascular disease. (Circulation. 2001;103:2792-2798.)
Background-Although many genetic epidemiology and biomarker studies have been conducted to examine associations of genetic variants and circulating proteins with cardiovascular disease and risk factors, there has been little study of gene expression or transcriptomics. Quantitative differences in the abundance of transcripts has been demonstrated in malignancies, but gene expression from a large community-based cohort examining risk of cardiovascular disease has never been reported. Methods and Results-On the basis of preliminary microarray data and previously suggested genes from the literature, we measured expression of 48 genes by high-throughput quantitative reverse-transcriptase polymerase chain reaction in 1846 participants of the Framingham Offspring cohort from RNA derived from isolated platelets and leukocytes. A multivariable stepwise regression model was used to assess clinical correlates of quantitative RNA expression. For specific inflammatory platelet-derived transcripts, including ICAM1, IFNG, IL1R1, IL6, MPO, COX2, TNF, TLR2, and TLR4, there were significant associations with higher body mass index (BMI). Compared with platelets, fewer leukocyte-derived transcripts were associated with BMI or other cardiovascular risk factors. Select transcripts were found to be highly heritable, including GPIBA and COX1. Almost uniformly, heritable transcripts were not those associated with BMI. Conclusions-Inflammatory transcripts derived from platelets, particularly those part of the nuclear factor B pathway, are associated with BMI, whereas others are heritable. This is the first study, using a large community-based cohort, to demonstrate clinical correlates of gene expression and is consistent with the hypothesis that specific peripheral-blood transcripts play a role in the pathogenesis of coronary heart disease and its risk factors. (Circulation. 2010;122:119-129.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.