Abstract. Internally and externally mixed aerosols present significant challenges in assessing the hygroscopicity of each aerosol component. This study presents a new sampling technique which uses differences in volatility to separate mixtures and directly examine their respective composition and hygroscopic contribution. A shared thermodenuder and unheated 10 bypass line are continuously cycled between an aerosol mass spectrometer and a volatility and hygroscopicity tandem differential mobility analyser, allowing real-time comparative analysis of heated and unheated aerosol properties.Measurements have been taken of both chamber-generated secondary organic aerosol and coastal marine aerosol at Cape Grim, Australia, to investigate system performance under diverse conditions. Despite rapidly changing aerosol properties and the need to restrict analysis to a narrow size-range, the former experiment separated the hygroscopic influences of 15 ammonium sulfate and two distinct organic components with similar oxygen to carbon ratios but different volatilities.Analysis of the marine aerosol revealed an external mixture of non-sea salt sulfates and sea spray aerosol, both of which likely shared similar volatile fractions composed of sulfuric acid and a non-hygroscopic organic component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.