N-Acetylcysteine (NAC) is a well established thiol antioxidant which, after uptake, deacylation and conversion to glutathione functions as both a redox buffer and a reactive oxygen intermediate scavenger. We report here that NAC completely blocks activation induced death and associated DNA fragmentation of myelin basic protein (MBP) specific T cell hybridomas. Conversely, NAC had very little effect on the antigen driven proliferation of a MBP specific T cell line similar to that from which the hybridomas were derived. NAC displayed an analogous absolute inhibition of mitogen mediated activation induced death, even if added up to 3 h post activation. Although glutathione was as efficient as NAC at blocking activation induced death, dithiothreitol displayed minimal inhibition while L-cysteine had no effect at all. The observation that certain thiol antioxidants such as NAC and glutathione can completely block the activation induced death of T cell hybridomas implicates redox regulation in this process.
Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate-rich elements (AREs) in the 3′-untranslated regions (3′UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3′UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases.AU-rich elements | mRNA stability | inflammation | deadenylation T ristetraprolin (TTP) is the prototype of a small family of RNA binding proteins that can bind to adenylate-uridylate (AU)-rich elements (AREs) in the 3′-UTR (3′UTR) of its target mRNAs and promote their rapid turnover (1, 2). TTP-deficient mice developed a chronic systemic inflammatory syndrome (3) that was prevented by interfering with the action of TNF (3-5). Tnf mRNA was then identified as a direct target of TTP-mediated destabilization (4, 6); its increase in stability in the TTP KO mice leads to the commensurate overproduction of TNF protein (4, 5).TTP mRNA expression exhibits a pattern characteristic of immediate-early response genes in several cell types, with low-toundetectable levels of expression under basal conditions, and a rapid and transient induction upon stimulation (4,7,8). The transient nature of this induction is largely due to the instability of the TTP mRNA itself, part of which is thought to be due to AREs located within the 3′UTR of TTP mRNA (4,8,9). Indeed, TTP has been suggested to bind to its own AREs and autoregulate its expression through a negative feedback loop (9). Although expression of TTP protein in these systems is also rapidly inducible, the protein is more stable than the mRNA after induction, often persisting at high level...
Cytokine-NAg fusion proteins represent an emerging platform for specific targeting of self-antigen to particular APC subsets as a means to achieve antigen-specific immunological tolerance. This study focused on cytokine-NAg fusion proteins that targeted NAg to myeloid APC. Fusion proteins contained GM-CSF or the soluble extracellular domain of M-CSF as the N-terminal domain and the encephalitogenic 69-87 peptide of MBP as the C-terminal domain. GMCSF-NAg and MCSF-NAg fusion proteins were approximately 1000-fold and 32-fold more potent than NAg in stimulating antigenic proliferation of MBP-specific T cells, respectively. The potentiated antigenic responses required cytokine-NAg covalent linkage and receptor-mediated uptake. That is, the respective cytokines did not potentiate antigenic responses when cytokine and NAg were added as separate molecules, and the potentiated responses were inhibited specifically by the respective free cytokine. Cytokine-dependent targeting of NAg was specific for particular subsets of APC. GMCSF-NAg and MCSF-NAg targeted NAg to DC and macrophages; conversely, IL4-NAg and IL2-NAg fusion proteins, respectively, induced an 1000-fold enhancement in NAg reactivity in the presence of B cell and T cell APC. GMCSF-NAg significantly attenuated severity of EAE when treatment was completed before encephalitogenic challenge or alternatively, when treatment was initiated after onset of EAE. MCSF-NAg also had significant tolerogenic activity, but GMCSF-NAg was substantially more efficacious as a tolerogen. Covalent GMCSF-NAg linkage was required for prevention and treatment of EAE. In conclusion, GMCSF-NAg was highly effective for targeting NAg to myeloid APC and was a potent, antigen-specific tolerogen in EAE.
Myelin-specific induction of tolerance represents a promising means to modify the course of autoimmune inflammatory demyelinating diseases such as multiple sclerosis (MS). Our laboratory has focused on a novel preclinical strategy for the induction of tolerance to the major encephalitogenic epitopes of myelin that cause experimental autoimmune encephalomyelitis (EAE) in rats and mice. This novel approach is based on the use of cytokine-NAg (neuroantigen) fusion proteins comprised of the native cytokine fused either with or without a linker to a NAg domain. Several single-chain cytokine-NAg fusion proteins were tested including GMCSF-NAg, IFNbeta-NAg, NAgIL16, and IL2-NAg. These cytokine-NAg vaccines were tolerogenic, therapeutic vaccines that had tolerogenic activity when given as pre-treatments before encephalitogenic immunization and also were effective as therapeutic interventions during the effector phase of EAE. The rank order of inhibitory activity was as follows: GMCSF-NAg, IFNbeta-NAg > NAgIL16 > IL2-NAg > MCSF-NAg, IL4-NAg, IL-13-NAg, IL1RA-NAg, and NAg. Several cytokine-NAg fusion proteins exhibited antigen-targeting activity. High affinity binding of the cytokine domain to specific cytokine receptors on particular subsets of APC resulted in the concentrated uptake of the NAg domain by those APC which in turn facilitated the enhanced processing and presentation of the NAg domain on cell surface MHC class II glycoproteins. For most cytokine-NAg vaccines, the covalent linkage of the cytokine domain and NAg domain was required for inhibition of EAE, thereby indicating that antigenic targeting of the NAg domain to APC was also required in vivo for tolerogenic activity. Overall, these studies introduced a new concept of cytokine-NAg fusion proteins as a means to induce tolerance and to inhibit the effector phase of autoimmune disease. The approach has broad application for suppressive vaccination as a therapy for autoimmune diseases such as MS.
The purpose of this study was to determine whether the clonotypic specificity of the T cell receptor influences the specificity of T cell-mediated antigen presentation. We have previously shown that myelin basic protein (MBP)-specific Lewis rat GP2.E5/R1 (R1) T cells cultured with antigen, irradiated syngeneic splenocytes (IrrSPL) and tolerogenic monoclonal antibody become highly effective antigen-presenting cells (APC). In the current studies, we investigated the transfer of specific (MBP) and unrelated (conalbumin) antigens from antigen-pulsed SPL to R1 T cells. R1 T cells cultured with IrrSPL that were pulsed simultaneously with both MBP and conalbumin acquired and presented both antigens to the appropriate T cell responders in a secondary assay. These results suggested a physical transfer of major histocompatibility complex (MHC)/peptide complexes from professional APC to R1 T cells. Transfer of conalbumin from professional APC to R1 T cells required specific recognition of MBP and was optimal when both conalbumin and MBP were presented on the same group of professional APC. Antigens transfer did not occur when allogeneic SPL were used as APC. The anti-I-A mAb OX6 inhibited antigen transfer but only when added during the initiation of culture. OX6 also inhibited antigen acquisition by R1-trans, a variant of the R1 T cell line which constitutively synthesizes high levels of I-A, from MBP-pulsed IrrSPL but blockade of I-A did not inhibit antigen acquisition when soluble MBP was added directly to the culture. Despite constitutive synthesis of I-A, R1-trans T cells did not acquire guinea pig MBP from pulsed allogeneic APC. These studies demonstrate that although T cells of a particular specificity can present unrelated antigens, the cognate interaction of the T cell antigen receptor with the appropriate antigen/self-MHC complex strongly promotes acquisition of these complexes from professional APC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.