Vaccinating individuals with more exposure to others can be disproportionately effective, in theory, but identifying these individuals is difficult and has long prevented implementation of such strategies. Here, we propose how the technology underlying digital contact tracing could be harnessed to boost vaccine coverage among these individuals. In order to assess the impact of this “hot-spotting” proposal we model the spread of disease using percolation theory, a collection of analytical techniques from statistical physics. Furthermore, we introduce a novel measure which we call the efficiency, defined as the percentage decrease in the reproduction number per percentage of the population vaccinated. We find that optimal implementations of the proposal can achieve herd immunity with as little as half as many vaccine doses as a non-targeted strategy, and is attractive even for relatively low rates of app usage.
After vaccinating health care workers and vulnerable groups against COVID-19, authorities will need to decide how to vaccinate everyone else. Prioritising individuals with more contacts can be disproportionately effective, in theory, but identifying these individuals is difficult. Here we show that the technology underlying Bluetooth exposure notification applications, such as used for digital contact tracing, can be leveraged to prioritise vaccination based on individual contact data. Our approach is based on the insight that these apps also act as local sensing devices measuring each user's total exposure time to other users, thereby enabling the implementation of a previously impossible strategy that prioritises potential super-spreaders. Furthermore, by generalising percolation theory and introducing a novel measure of vaccination efficiency, we demonstrate that this ``hot-spotting" strategy can achieve herd immunity with up to half as many vaccines as a non-targeted strategy, and is attractive even for relatively low rates of app usage.
After vaccinating health care workers and vulnerable groups against COVID-19, authorities will need to decide how to vaccinate everyone else. Prioritising individuals with more contacts can be disproportionately effective, in theory, but identifying these individuals is difficult. Here we show that the technology underlying Bluetooth exposure notification applications, such as used for digital contact tracing, can be leveraged to prioritise vaccination based on individual contact data. Our approach is based on the insight that these apps also act as local sensing devices measuring each user’s total exposure time to other users, thereby enabling the implementation of a previously impossible strategy that prioritises potential super-spreaders. Furthermore, by generalising percolation theory and introducing a novel measure of vaccination efficiency, we demonstrate that this “hot-spotting” strategy can achieve herd immunity with up to half as many vaccines as a non-targeted strategy, and is attractive even for relatively low rates of app usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.