Prospective studies of infants at risk for autism spectrum disorder have provided important clues about the early behavioural symptoms of autism spectrum disorder. Diagnosis of autism spectrum disorder, however, is not currently made until at least 18 months of age. There is substantially less research on potential brain-based differences in the period between 6 and 12 months of age. Our objective in the current study was to use magnetic resonance imaging to identify any consistently observable brain anomalies in 6-9 month old infants who would later develop autism spectrum disorder. We conducted a prospective infant sibling study with longitudinal magnetic resonance imaging scans at three time points (6-9, 12-15, and 18-24 months of age), in conjunction with intensive behavioural assessments. Fifty-five infants (33 'high-risk' infants having an older sibling with autism spectrum disorder and 22 'low-risk' infants having no relatives with autism spectrum disorder) were imaged at 6-9 months; 43 of these (27 high-risk and 16 low-risk) were imaged at 12-15 months; and 42 (26 high-risk and 16 low-risk) were imaged again at 18-24 months. Infants were classified as meeting criteria for autism spectrum disorder, other developmental delays, or typical development at 24 months or later (mean age at outcome: 32.5 months). Compared with the other two groups, infants who developed autism spectrum disorder (n = 10) had significantly greater extra-axial fluid at 6-9 months, which persisted and remained elevated at 12-15 and 18-24 months. Extra-axial fluid is characterized by excessive cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount of extra-axial fluid detected as early as 6 months was predictive of more severe autism spectrum disorder symptoms at the time of outcome. Infants who developed autism spectrum disorder also had significantly larger total cerebral volumes at both 12-15 and 18-24 months of age. This is the first magnetic resonance imaging study to prospectively evaluate brain growth trajectories from infancy in children who develop autism spectrum disorder. The presence of excessive extra-axial fluid detected as early as 6 months and the lack of resolution by 24 months is a hitherto unreported brain anomaly in infants who later develop autism spectrum disorder. This is also the first magnetic resonance imaging evidence of brain enlargement in autism before age 2. These findings raise the potential for the use of structural magnetic resonance imaging to aid in the early detection of children at risk for autism spectrum disorder or other neurodevelopmental disorders.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors that typically emerge by 24 months of age. To develop effective early interventions that can potentially ameliorate the defining deficits of ASD and improve long-term outcomes, early detection is essential. Using prospective neuroimaging of 59 6-month-old infants with a high familial risk for ASD, we show that functional connectivity magnetic resonance imaging correctly identified which individual children would receive a research clinical best-estimate diagnosis of ASD at 24 months of age. Functional brain connections were defined in 6-month-old infants that correlated with 24-month scores on measures of social behavior, language, motor development, and repetitive behavior, which are all features common to the diagnosis of ASD. A fully cross-validated machine learning algorithm applied at age 6 months had a positive predictive value of 100% [95% confidence interval (CI), 62.9 to 100], correctly predicting 9 of 11 infants who received a diagnosis of ASD at 24 months (sensitivity, 81.8%; 95% CI, 47.8 to 96.8). All 48 6-month-old infants who were not diagnosed with ASD were correctly classified [specificity, 100% (95% CI, 90.8 to 100); negative predictive value, 96.0% (95% CI, 85.1 to 99.3)]. These findings have clinical implications for early risk assessment and the feasibility of developing early preventative interventions for ASD.
Background We previously reported that infants who developed ASD had increased CSF in the subarachnoid space (i.e., extra-axial CSF) from 6–24 months of age (1). We attempt to confirm and extend this finding in a larger, independent sample. Methods A longitudinal MRI study of infants at-risk for ASD was carried out on 343 infants, who underwent neuroimaging at 6, 12, and 24 months; 221 were high-risk for ASD because of an older sibling with ASD; 122 were low-risk with no family history of ASD. Forty-seven infants were diagnosed with ASD at 24 months and were compared with 174 high-risk and 122 low-risk infants without ASD. Results Infants who developed ASD had significantly greater extra-axial CSF volume at 6 months compared to both comparison groups without ASD (18% greater than high-risk infants without ASD; Cohen’s d=0.54). Extra-axial CSF volume remained elevated through 24 months (d=0.46). Infants with more severe autism symptoms had an even greater volume of extra-axial CSF from 6–24 months (24% greater at 6 months, d=0.70; 15% greater at 24 months, d=0.70). Extra-axial CSF volume at 6 months predicted which high-risk infants would be diagnosed with ASD at 24 months with an overall accuracy of 69% and corresponding 66% sensitivity and 68% specificity, which was fully cross-validated in a separate sample. Conclusions This study confirms and extends previous findings that increased extra-axial CSF is detectable at 6 months in high-risk infants who develop ASD. Future studies will address whether this anomaly is a contributing factor to the etiology of ASD or an early risk marker for ASD.
BackgroundMagnetic resonance imaging (MRI) has been widely used in studies evaluating the neuropathology of autism spectrum disorder (ASD). Studies are often limited, however, to higher functioning individuals with ASD. MRI studies of individuals with ASD and comorbid intellectual disability (ID) are lacking, due in part to the challenges of acquiring images without the use of sedation.MethodsUtilizing principles of applied behavior analysis (ABA), we developed a protocol for acquiring structural MRI scans in school-aged children with ASD and intellectual impairment. Board certified behavior analysts worked closely with each child and their parent(s), utilizing behavior change techniques such as pairing, shaping, desensitization, and positive reinforcement, through a series of mock scanner visits to prepare the child for the MRI scan. An objective, quantitative assessment of motion artifact in T1- and diffusion-weighted scans was implemented to ensure that high-quality images were acquired.ResultsThe sample consisted of 17 children with ASD who are participants in the UC Davis Autism Phenome Project, a longitudinal MRI study aimed at evaluating brain developmental trajectories from early to middle childhood. At the time of their initial scan (2–3.5 years), all 17 children had a diagnosis of ASD and development quotient (DQ) <70. At the time of the current scan (9–13 years), 13 participants continued to have IQs in the range of ID (mean IQ = 54.1, sd = 12.1), and four participants had IQs in the normal range (mean = 102.2, sd = 7.5). The success rate in acquiring T1-weighted images that met quality assurance for acceptable motion artifact was 100 %. The success rate for acquiring high-quality diffusion-weighted images was 94 %.ConclusionsBy using principles of ABA in a research MRI setting, it is feasible to acquire high-quality images in school-aged children with ASD and intellectual impairment without the use of sedation. This is especially critical to ensure that ongoing longitudinal studies of brain development can extend from infancy and early childhood into middle childhood in children with ASD at all levels of functioning, including those with comorbid ID.Electronic supplementary materialThe online version of this article (doi:10.1186/s11689-016-9154-9) contains supplementary material, which is available to authorized users.
Summary Background: We previously showed, in two separate cohorts, that high-risk infants who were later diagnosed with autism spectrum disorder had abnormally high extra-axial cerebrospinal fluid (CSF) volume from age 6–24 months. The presence of increased extra-axial CSF volume preceded the onset of behavioural symptoms of autism and was predictive of a later diagnosis of autism spectrum disorder. In this study, we aimed to establish whether increased extra-axial CSF volume is found in a large, independent sample of children diagnosed with autism spectrum disorder, whether extra-axial CSF remains abnormally increased beyond infancy, and whether it is present in both normal-risk and high-risk children with autism. Methods: In this case-control MRI study, children with autism spectrum disorder or with typical development aged 2–4 years were recruited from the community to the UC Davis MIND Institute Autism Phenome Project, based in Sacramento, CA, USA. The autism spectrum disorder group comprised children with autism spectrum disorder who were either normal risk (ie, from simplex families) or high risk (ie, from multiplex families). Measurements of extra-axial CSF volume, brain volume, head circumference, sleep problems, and familial risk status were derived from MRI and behavioural assessments. We applied a previously validated machine learning algorithm based on extra-axial CSF volume, brain volume, age, and sex to the current dataset. Findings: Between July 20, 2007, and Dec 13, 2012, 159 children with autism spectrum disorder (132 male, 27 female) and 77 with typical development (49 male, 28 female) underwent MRI scans. The autism spectrum disorder group had an average of 15·1% more extra-axial CSF than controls after accounting for differences in brain volume, weight, age, and sex (least-squares mean 116·74 cm3 [SE 3·33] in autism group vs 101·40 cm3 [3·93] in typical development group; p=0·007; Cohen’s d=0·39). Subgroups of normal-risk (n=132) and high-risk (n=27) children with autism spectrum disorder had nearly identical extra-axial CSF volumes (p=0·78), and both subgroups had significantly greater volumes than controls. Both extra-axial CSF volume (p=0·004) and brain volume (p<0·0001) uniquely contributed to enlarged head circumference in the autism spectrum disorder group (p=0·04). Increased extra-axial CSF volume was associated with greater sleep disturbances (p=0·03) and lower non-verbal ability (p=0·04). The machine learning algorithm correctly predicted autism spectrum disorder diagnosis with a positive predictive value of 83% (95% CI 76·2–88·3). Interpretation: Increased extra-axial CSF volume is a reliable brain anomaly that has now been found in three independent cohorts, comprising both high-risk and normal-risk children with autism spectrum disorder. Increased extra-axial CSF volume is detectable using conventional structural MRI scans from infancy through to age 3 years. These results suggest that increased extra-axial CSF volume could be an early stratification biomarker of a biologica...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.