Poly(ethylene glycol) (PEG) hydrogels, modified with RGD, are promising platforms for cell encapsulation and tissue engineering. While these hydrogels offer tunable mechanical properties, the extent of the host response may limit their in vivo applicability. The overall objective was to characterize the effects of hydrogel stiffness on the in vitro macrophage response and in vivo host response. We hypothesized that stiffer substrates induce better attachment, adhesion and increased cell spreading, which elevates the macrophage classically activated phenotype and leads to a more severe foreign body reaction (FBR). PEG-RGD hydrogels were fabricated with compressive moduli of 130, 240 and 840kPa, and the same RGD concentration. Hydrogel stiffness did not impact macrophage attachment, but elicited differences in cell morphology. Cells retained a round morphology on 130kPa substrates, with localized and dense F-actin and localized αV integrin stainings. Contrarily, cells on stiffer substrates were more spread, with filopodia protruding from the cell, a more defined F-actin, and greater αV integrin staining. When stimulated with lipopolysaccharide, macrophages had a classical activation phenotype, with increased expression of TNF-α, IL-1β, and IL-6, however the degree of activation was significantly reduced with the softest hydrogels. A FBR ensued in response to all hydrogels when implanted subcutaneously in mice, but 28 days post-implantation the layer of macrophages at the implant surface was significantly lower in the softest hydrogels. In conclusion, hydrogels with lower stiffness led to reduced macrophage activation and a less severe and more typical FBR, and therefore are more suited for in vivo tissue engineering applications.
Poly(ethylene glycol) (PEG) hydrogels with their highly tunable properties are promising implantable materials, but as with all non-biological materials, they elicit a foreign body response (FBR). Recent studies, however, have shown that incorporating the oligopeptide RGD into PEG hydrogels reduces the FBR. To better understand the mechanisms involved and the role of RGD in mediating the FBR, PEG, PEG-RGD and PEG-RDG hydrogels were investigated. After a 28-day subcutaneous implantation in mice, a thinner and less dense fibrous capsule formed around PEG-RGD hydrogels, while PEG and PEG-RDG hydrogels exhibited stronger, but similar FBRs. Protein adsorption to the hydrogels, which is considered the first step in the FBR, was also characterized. In vitro experiments confirmed that serum proteins adsorbed to PEG-based hydrogels and were necessary to promote macrophage adhesion to PEG and PEG-RDG, but not PEG-RGD hydrogels. Proteins adsorbed to the hydrogels in vivo were identified using liquid chromatography-tandem mass spectrometry. The majority (245) of the total proteins (≥300) that were identified was present on all hydrogels with many proteins being associated with wounding and acute inflammation. These findings suggest that the FBR to PEG hydrogels may be mediated by the presence of inflammatory-related proteins adsorbed to the surface, but that macrophages appear to sense the underlying chemistry, which for RGD improves the FBR.
The implantation of non-biological materials, including scaffolds for tissue engineering, ubiquitously leads to a foreign body response (FBR). We recently reported that this response negatively impacts fibroblasts encapsulated within a synthetic hydrogel and in turn leads to a more severe FBR, suggesting a cross-talk between encapsulated cells and inflammatory cells. Given the promise of mesenchymal stem cells (MSCs) in tissue engineering and recent evidence of their immunomodulatory properties, we hypothesized that MSCs encapsulated within poly(ethylene glycol) (PEG) hydrogels will attenuate the FBR. In vitro, murine MSCs encapsulated within PEG hydrogels attenuated classically activated primary murine macrophages by reducing gene expression and protein secretion of pro-inflammatory cytokines, most notably tumor necrosis factor-α. Using a COX2 inhibitor, prostaglandin E2 (PGE2) was identified as a mediator of MSC immunomodulation of macrophages. In vivo, hydrogels laden with MSCs, osteogenically differentiating MSCs, or no cells were implanted subcutaneously into C57BL/6 mice for 28 days to assess the impact of MSCs on the fibrotic response of the FBR. The presence of encapsulated MSCs reduced fibrous capsule thickness compared to acellular hydrogels, but this effect diminished with osteogenic differentiation. The use of MSCs prior to differentiation in tissue engineering may therefore serve as a dynamic approach, through continuous cross-talk between MSCs and the inflammatory cells, to modulate macrophage activation and attenuate the FBR to implanted synthetic scaffolds thus improving the long-term tissue engineering outcome.
Poly(ethylene glycol) (PEG)-based hydrogels are promising in situ cell carriers for tissue engineering. However, their success in vivo will in part depend upon the foreign body reaction (FBR). This study tests the hypothesis that the FBR affects cells encapsulated within PEG hydrogels, and in turn influences the severity of the FBR. Fibroblasts were encapsulated within PEG hydrogels containing RGD to support cell attachment. Macrophages were seeded on top of cell-laden hydrogels to mimic in vivo macrophage interrogation and treated with lipopolysaccharide to induce an inflammatory phenotype. The presence of activated macrophages reduced fibroblast gene expression for extracellular matrix molecules and remodeling, but stimulated VEGF and IL-1β gene expression. Fibroblasts impacted macrophage phenotype leading to increased iNOS, IL-1β and TNF-α expressions. Syngeneic cell-laden and acellular hydrogels were also implanted subcutaneously into C57bl/6 mice for 2, 7 and 28 days. Encapsulated fibroblasts secreted collagen type I during the first week, but tissue deposition and cellularity decreased by 28 days. The presence of encapsulated fibroblasts led to greater acute inflammation, but did not influence the fibrotic response. In summary, this work emphasizes the importance of the host response in tissue engineering, and the potentially deleterious impact it may have on cell-laden synthetic scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.