A linear design system, already in use for the forward and inverse design of three-dimensional turbine aerofoils, has been extended for the design of their end walls. This paper shows how this method has been applied to the design of a nonaxisymmetric end wall for a turbine rotor blade in linear cascade. The calculations show that nonaxisymmetric end wall profiling is a powerful tool for reducing secondary flows, in particular the secondary kinetic energy and exit angle deviations. Simple end wall profiling is shown to be at least as beneficial aerodynamically as the now standard techniques of differentially skewing aerofoil sections up the span, and (compound) leaning of the aerofoil. A design is presented that combines a number of end wall features aimed at reducing secondary loss and flow deviation. The experimental study of this geometry, aimed at validating the design method, is the subject of the second part of this paper. The effects of end wall perturbations on the flow field are calculated using a three-dimensional pressure correction based Reynolds-averaged Navier–Stokes CFD code. These calculations are normally performed overnight on a cluster of work stations. The design system then calculates the relationships between perturbations in the end wall and resulting changes in the flow field. With these available, linear superposition theory is used to enable the designer to investigate quickly the effect on the flow field of many combinations of end wall shapes (a matter of minutes for each shape). [S0889-504X(00)00902-8]
Carbon-fibre-reinforced polyether ether ketone (CFR-PEEK) exhibits excellent biomechanical properties as it has an elastic modulus similar to bone. However, CFR-PEEK displays inferior biocompatibility compared with titanium alloy and coating techniques are therefore of interest in order to improve integration. In this paper, the early biological response to CFR-PEEK implants, with and without hydroxyapatite coating, was investigated. Furthermore, a hydroxyapatite-coated titanium alloy reference served as a clinically relevant control. The study was conducted in a rabbit model, both in femur trabecular bone as well as in tibia cortical bone. The results demonstrated that an hydroxyapatite coating significantly enhances the bone response to PEEK implants in vivo. Moreover, in cortical bone, hydroxyapatite-coated PEEK implants induced superior bone response compared with hydroxyapatite-coated Ti ones. These results suggest that hydroxyapatite-coated CFR-PEEK is a suitable material for in vivo implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.