Methicillin-resistant Staphylococcus aureus (MRSA) is problematic both in hospitals and the community. Currently, we have limited understanding of mechanisms of innate immune evasion used by S. aureus. To that end, we created an isogenic deletion mutant in strain MW2 (USA400) of the saeR/S two-component gene regulatory system and studied its role in mouse models of pathogenesis and during human neutrophil interaction. In this study, we demonstrate saeR/S plays a distinct role in S. aureus pathogenesis and is vital for virulence of MW2 in a mouse model of sepsis. Moreover, deletion of saeR/S significantly impaired survival of MW2 in human blood and after neutrophil phagocytosis. Microarray analysis of genes influenced by saeR/S demonstrated SaeR/S of MW2 influences a wide variety of genes with diverse biological functions. These data shed new insight into how virulence is regulated in S. aureus and associates a specific staphylococcal gene-regulatory system with invasive staphylococcal disease.
This investigation examines the influence of alpha-toxin (Hla) during USA300 infection of human leukocytes. Survival of an USA300 isogenic deletion mutant of hla (USA300Δhla) in human blood was comparable to the parental wild-type strain and polymorphonuclear leukocyte (PMN) plasma membrane permeability caused by USA300 did not require Hla. Flow cytometry analysis of peripheral blood mononuclear cells (PBMCs) following infection by USA300, USA300Δhla, and USA300Δhla transformed with a plasmid over-expressing Hla (USA300Δhla Comp) demonstrated this toxin plays a significant role inducing plasma membrane permeability of CD14+, CD3+, and CD19+ PBMCs. Rapid plasma membrane permeability independent of Hla was observed for PMNs, CD14+ and CD19+ PBMCs following intoxication with USA300 supernatant while the majority of CD3+ PBMC plasma membrane permeability induced by USA300 required Hla. Addition of recombinant Hla to USA300Δhla supernatant rescued CD3+ and CD19+ PBMC plasma membrane permeability generated by USA300 supernatant. An observed delay in plasma membrane permeability caused by Hla in conjunction with Annexin V binding and ApoBrdU Tunel assays examining PBMCs intoxicated with recombinant Hla or infected with USA300, USA300Δhla, USA300Δhla Comp, and USA300ΔsaeR/S suggest Hla induces programmed cell death of monocytes, B cells, and T cells that results in plasma membrane permeability. Together these findings underscore the importance of Hla during S. aureus infection of human tissue and specifically demonstrate Hla activity during USA300 infection triggers programmed cell death of human monocytes, T cells and B cells that leads to plasma membrane permeability.
Streptococcus pyogenes is an important human pathogen with an expansive repertoire of verified and putative virulence factors. Here we demonstrate that a mutant deficient in the production of the streptococcal ADPribosyltransferase SpyA generates lesions of reduced size in a subcutaneous mouse infection model. At early stages of infection, when the difference in lesion size is first established, inflamed tissue isolated from lesions of mice infected with spyA mutant bacteria has higher levels of mRNA encoding the chemokines CXCL1 and CCL2 than does tissue isolated from mice infected with wild-type bacteria. In addition, at these early times, the mRNA levels for the gene encoding the intermediate filament vimentin are higher in the mutant-infected tissue. As wound resolution progresses, mRNA levels of the gene encoding matrix metallopeptidase 2 are lower in mutant-infected tissue. Furthermore, we demonstrate that the spyA mutant is internalized more efficiently than wild-type bacteria by HeLa cells. We conclude that SpyA contributes to streptococcal pathogenesis in the mouse subcutaneous infection model. Our observations suggest that the presence of SpyA delays wound healing in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.