Controlling the properties of lead molecules is critical in drug discovery, but sourcing large numbers of lead-like compounds for screening collections is a major challenge. A unified synthetic approach is described that enabled the synthesis of 52 diverse lead-like molecular scaffolds from a minimal set of 13 precursors. The divergent approach exploited a suite of robust, functional group-tolerant transformations. Crucially, after derivatisation, these scaffolds would target significant lead-like chemical space, and complement commercially-available compounds.
The discovery of biologically active small molecules is shaped, in large part, by their synthetic (or biosynthetic accessibility). However, chemists' historical exploration of chemical space has been highly uneven and unsystematic. This article describes synthetic strategies that have emerged that may allow chemical space to be explored more systematically. Particular emphasis is placed on approaches that allow the scaffolds of small molecules to be varied combinatorially. In addition, some examples of bioactive small molecules that have been discovered by screening diverse small molecule libraries are highlighted. The authors comment on the likely scope of each of the strategies to deliver skeletally-diverse libraries. In addition, the authors highlight some key challenges for the future: the extension to libraries based on hundreds of distinct scaffolds; and the development of approaches that focus overtly on drug-relevant chemical space.
Activity-directed synthesis (ADS), a novel discovery approach in which bioactive molecules emerge in parallel with associated syntheses, was exploited to develop a weakly binding fragment into novel androgen receptor agonists. Harnessing promiscuous intermolecular reactions of carbenoid compounds enabled highly efficient exploration of chemical space. Four substrates were prepared, yet exploited in 326 reactions to explore diverse chemical space; guided by bioactivity alone, the products of just nine of the reactions were purified to reveal diverse novel agonists with up to 125-fold improved activity. Remarkably, one agonist stemmed from a novel enantioselective transformation; this is the first time that an asymmetric reaction has been discovered solely on the basis of the biological activity of the product. It was shown that ADS is a significant addition to the lead generation toolkit, enabling the efficient and rapid discovery of novel, yet synthetically accessible, bioactive chemotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.