The androgen receptor (AR) is a member of the nuclear hormone receptor superfamily. Recent work in this field has been focused upon defining the mechanisms of transcriptional control exacted by members of this superfamily. Using a COOH-terminal region of the human AR in a yeast two-hybrid screen, we have identified Tip60 as an AR-interacting protein. In this report, we show that Tip60, which was originally identified as a coactivator for the human immunodeficiency virus TAT protein, can enhance AR-mediated transactivation in a ligand-dependent manner in LNCaP and COS-1 cell lines. In addition, our experiments show that Tip60 can also enhance transactivation through the estrogen receptor and progesterone receptor in a ligand-dependent manner; thus identifying Tip60 as a nuclear hormone receptor coactivator. Our studies also demonstrate that Tip60 co-immunoprecipitates with the full-length AR in vitro and that, in our system, Tip60 enhances transactivation to levels observed with the coactivators steroid receptor coactivator 1, p300, and CREB-binding protein.The importance of such proteins in enhancing nuclear hormone receptor-mediated transcriptional activation is widely accepted, and this work suggests that Tip60 may have an equally important role to play.
The AR1 is a member of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. In the nucleus, the ligand-activated receptors bind to their cognate response elements in or near promoter regions of target genes to positively or negatively regulate gene expression (reviewed in Ref.
The human androgen receptor (hAR) is a ligand-dependent transcription factor responsible for the development of the male phenotype. The mechanism whereby nuclear translocation of the hAR is induced by its natural ligand 5alpha-dihydrotestosterone is a phenomenon not fully understood. The two-hybrid interaction trap assay has been used to isolate proteins that interact with the hAR in an attempt to identify molecules involved in hAR transactivation and movement. We have identified the actin-binding protein filamin, a 280-kDa component of the cytoskeleton, as an hAR interacting protein. This interaction is ligand independent but is enhanced in its presence. The functional significance of this interaction was analyzed using a cell line deficient in filamin via transient expression of a green fluorescent protein-hAR chimera. In filamin-deficient cells this revealed that hAR remained cytoplasmic even after prolonged exposure to synthetic ligand. Nuclear shuttling was restored when this cell line regained wild-type expression of filamin. These data suggest a novel role for filamin, implicating it as an important molecule in AR movement from the cytoplasm to the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.