A control-based analysis and characterization of a free-piston Stirling engine is presented, and proposed as a lightweight power supply for untethered robots. Typically, such devices are designed from the point of view of a thermodynamic cycle in terms of traditional thermodynamic equations of state. Such equations of state are independent of time and therefore lend little insight when dynamic elements are incorporated into the design. The approach presented here is from a system dynamics and control perspective. Equations of state are replaced by dynamic system modeling elements. Utilizing these dynamic elements, control concepts are applied to evaluate a given configuration and ensure an unstable oscillatory response and therefore transform heat into useful work. A simulation of a commercially available free-piston engine is presented, and standard control design tools are applied to its linearized model. The results show promising potential in utilizing small-scale free-piston Stirling engines as portable power supply for robotic systems.
This paper describes a method of energetically modeling a free-piston Stirling engine. This model is compared to a lower order Schmidt model, and both models are linearized from nonlinear continuous form and cast into closed-loop state space models. To validate the linear models, an experimental apparatus to simulate the performance of different engines was constructed using linear actuators, sensors, and a free-piston Stirling engine. The behavior of the experimental apparatus was compared to the behavior predicted by the linear models. The operating characteristics of the experimental apparatus are compared to the dominant poles of the closed loop models. Relations are described between the imaginary component of the dominant poles and the operating frequency of the engine and between the real component and the ability of the engine to enter sustained oscillation.
This paper uses lumped parameter dynamic equations to model the mass flow, piston dynamics, and control volume behavior inside a free-piston Stirling engine. A new model for a Stirling engine thermal regenerator that incorporates a dynamically changing temperature gradient is presented. The use of graphite as a regenerator matrix material is justified despite its limited background by comparing the functional requirements of regenerators to heat exchangers where graphite use is commonplace. Experimental results are used to characterize a graphite regenerator and validate the dynamic model.
The mechanical design, modeling, and partial experimental validation of a prototype Stirling thermocompressor is presented in this paper. The thermocompressor is intended to serve as a compact and quiet, untethered 50 W, pneumatic power supply for an ankle foot orthosis. The goal of high efficiency at the target power density is pursued through the use of novel heat exchangers and high operating temperature and frequency. The motion of the displacer piston is controlled utilizing a brushless DC motor driving a continuous linear reciprocating screw. This paper presents the experimental validation of the heat transfer and pressure dynamics portions of the thermocompressor, leaving the modeling and validation of mass transfer to future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.