Pelvic ganglia are mixed sympathetic-parasympathetic ganglia and provide the majority of the autonomic innervation to the urogenital organs. Here we describe the structural and histochemical features of the major pelvic ganglion in the male mouse and compare two different mouse strains. The basic structural features of the ganglion are similar to those in the male rat. Almost all pelvic ganglion cells are monopolar and most are cholinergic. All contain either neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP), or both peptides together. The peptide coexistence varies between strains, with C57BL/6 mice having similar proportions of neurons with NPY alone, VIP alone or both peptides. In contrast, virtually all pelvic neurons in the Quackenbush-Swiss (QS) strain express NPY, i.e. the level of VIP/NPY coexistence is much higher. Cholinergic axons provide the major nerve supply to epithelia of reproductive organs, bladder smooth muscle and, as described previously, penile erectile tissue. They also provide a minor component of the smooth muscle innervation of the prostate gland, seminal vesicles and vas deferens. Virtually all non-cholinergic pelvic ganglion cells are noradrenergic and contain NPY. Their major target is smooth muscle of reproductive organs. This study shows that the male mouse pelvic ganglion bears many similarities to that in the rat, but that VIP/NPY colocalisation is much more common in the mouse. We also show that there are differences in peptide expression in parasympathetic pelvic neurons between strains of mice. These studies provide the framework for future investigations on neural regulation of urogenital function, particularly in transgenic and knockout models.
Autonomic innervation of the prostate gland supplies the acini, and non-vascular and vascular smooth muscle. The activity of each of these tissues is enhanced by sympathetic outflow, whereas the role of the parasympathetic nervous system in this organ is unclear. In the present study, a range of methods was applied in rats to determine the location of autonomic neurons supplying this gland, the immunohistochemical properties of these neurons, the spinal connections made with the postganglionic pathways and the distribution of various axon types within the gland. Injection of the retrograde tracer, FluoroGold, into the ventral gland visualised neurons within the major pelvic ganglion and sympathetic chain. Fluorescence immunohistochemical studies on the labelled pelvic neurons showed that most were nonadrenergic (also containing neuropeptide Y, NPY), the others being non-noradrenergic and containing either vasoactive intestinal peptide (VIP) or NPY. Sympathetic dye-labelled neurons were identified by the presence of varicose nerve terminals stained for synaptophysin on their somata following lesion of sacral inputs. Parasympathetic innervation of dye-labelled neurons was identified by continued innervation after hypogastric nerve lesion. Most noradrenergic prostate-projecting neurons were sympathetic, as were many of the non-noradrenergic VIP neurons. Parasympathetic prostate-projecting neurons were largely non-noradrenergic and contained either VIP or NPY. All substances found in retrogradely labelled somata were located in axons within the prostate gland but had slightly different patterns of distribution. The studies have shown that there are a significant number of non-noradrenergic sympathetic prostate-projecting neurons, which contain VIP.
The pelvic ganglia contain both sympathetic and parasympathetic neurons and provide an interesting model in which to study the effects of a distributed spinal nerve lesion. Previous animal studies have suggested that after either lumbar or sacral nerve injury, some functional connections are restored between preganglionic and postganglionic neurons. It has been proposed that this is because of intact preganglionic axons sprouting collaterals to supply denervated ganglion cells. However, this has never been demonstrated, and our study has investigated whether the ganglion cells themselves contribute to axogenesis and restoration of peripheral circuitry. We have monitored the growth of axons from pelvic ganglion cells after lumbar or sacral nerve injury (partial decentralization), or a combination of the two (total decentralization). These new processes were distinguished from intact preganglionic terminals by their immunoreactivity for substances present only in pelvic ganglion neurons (vasoactive intestinal peptide, neuropeptide Y, and tyrosine hydroxylase). The proportion of pelvic neurons surrounded by these immunostained fibers was then assessed. Complete removal of preganglionic terminals provides the biggest stimulus for growth of new axon processes (sprouts), which grow profusely within just a few days. These arise from each of the main chemical classes of pelvic neurons but grow at different rates and have different distributions. Importantly, some chemical classes of sprouts preferentially supply neurons of dissimilar histochemistry, suggesting the presence of very specific targeting mechanisms rather than random growth. These sprouts are transient, however, those formed after partial decentralization appear to be maintained. Moreover, after lesion of either lumbar or sacral spinal nerves, many sprouts arise from neurons with intact spinal connections and innervate neurons that have lost their preganglionic inputs. This provides a very different alternative mechanism to reestablish communication between preganglionic and postganglionic neurons. In conclusion, we have demonstrated a rapid and selective axogenesis within the pelvic ganglion after spinal nerve injury. This may allow the development of novel strategies by which autonomic nerve pathways can be experimentally manipulated, to facilitate more rapid return of appropriate peripheral reflex control.
Autonomic innervation of the prostate gland supplies the acini, and non-vascular and vascular smooth muscle. The activity of each of these tissues is enhanced by sympathetic outflow, whereas the role of the parasympathetic nervous system in this organ is unclear. In the present study, a range of methods was applied in rats to determine the location of autonomic neurons supplying this gland, the immunohistochemical properties of these neurons, the spinal connections made with the postganglionic pathways and the distribution of various axon types within the gland. Injection of the retrograde tracer, FluoroGold, into the ventral gland visualised neurons within the major pelvic ganglion and sympathetic chain. Fluorescence immunohistochemical studies on the labelled pelvic neurons showed that most were nonadrenergic (also containing neuropeptide Y, NPY), the others being non-noradrenergic and containing either vasoactive intestinal peptide (VIP) or NPY. Sympathetic dye-labelled neurons were identified by the presence of varicose nerve terminals stained for synaptophysin on their somata following lesion of sacral inputs. Parasympathetic innervation of dye-labelled neurons was identified by continued innervation after hypogastric nerve lesion. Most noradrenergic prostate-projecting neurons were sympathetic, as were many of the non-noradrenergic VIP neurons. Parasympathetic prostate-projecting neurons were largely non-noradrenergic and contained either VIP or NPY. All substances found in retrogradely labelled somata were located in axons within the prostate gland but had slightly different patterns of distribution. The studies have shown that there are a significant number of non-noradrenergic sympathetic prostate-projecting neurons, which contain VIP.
In rats, following lesion of lumbar or sacral preganglionic axons, many pelvic ganglion cells undergo axogenesis to form baskets of terminals around select populations of nearby ganglion cells. The aim of the current study was to address mechanisms underlying initiation of this sprouting, focusing on a possible role for nerve growth factor (NGF). Immunohistochemical localization of NGF receptors (trkA and p75) showed that virtually all noradrenergic and a minority of cholinergic pelvic neurons expressed both receptors. Terminals immunoreactive for each substance were found in pelvic viscera. In pelvic ganglia, many glial cells expressed p75 but not trkA, and very few lumbar or sacral preganglionic neurons expressed either receptor. Lumbar and/or sacral preganglionic inputs were removed from ganglion cells by cutting the hypogastric, pelvic or both nerves, and tissues analysed 8 days later. Levels of receptor expression in noradrenergic pelvic ganglion cells were estimated by calculating the proportion that were receptor-immunopositive, and quantifying the intensity of trkA or p75 immunofluorescence. No lesion had a significant effect on trkA expression, however, a marked decrease in p75 occurred after cutting pelvic nerves, i.e. after deafferentation of neighbouring cholinergic neurons. These injuries appeared to cause little overall change in glial p75 expression. This study shows that manipulations that trigger sprouting from noradrenergic pelvic neurons cause downregulation of p75 but not trkA. Interestingly, this is occurring while some of their target organs are synthesizing high levels of NGF. This contrasts with other NGF-sensitive cells, in which one or both receptor types are upregulated by increased exposure to the ligand. The current study is also the first to show a change in p75 expression in neurons that are neither deafferented nor axotomized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.