The chemokine stromal cell–derived factor (SDF-1; also known as chemokine ligand 12 [CXCL12]) regulates many essential biological processes, including cardiac and neuronal development, stem cell motility, neovascularization, angiogenesis, apoptosis, and tumorigenesis. It is generally believed that SDF-1 mediates these many disparate processes via a single cell surface receptor known as chemokine receptor 4 (CXCR4). This paper characterizes an alternate receptor, CXCR7, which binds with high affinity to SDF-1 and to a second chemokine, interferon-inducible T cell α chemoattractant (I-TAC; also known as CXCL11). Membrane-associated CXCR7 is expressed on many tumor cell lines, on activated endothelial cells, and on fetal liver cells, but on few other cell types. Unlike many other chemokine receptors, ligand activation of CXCR7 does not cause Ca2+ mobilization or cell migration. However, expression of CXCR7 provides cells with a growth and survival advantage and increased adhesion properties. Consistent with a role for CXCR7 in cell survival and adhesion, a specific, high affinity small molecule antagonist to CXCR7 impedes in vivo tumor growth in animal models, validating this new receptor as a target for development of novel cancer therapeutics.
Summary Chemical or traumatic damage to the liver is frequently associated with aberrant healing(fibrosis) that overrides liver regeneration1–5. The mechanism by which hepatic niche cells differentially modulate regeneration and fibrosis during liver repair remains to be defined6–8. Hepatic vascular niche predominantly represented by liver sinusoidal endothelial cells (LSECs), deploys paracrine trophogens, known as angiocrine factors, to stimulate regeneration9–15. Nevertheless, it remains unknown how pro-regenerative angiocrine signals from LSECs is subverted to promote fibrosis16,17. Here, by combining inducible endothelial cell (EC)-specific mouse gene deletion strategy and complementary models of acute and chronic liver injury, we revealed that divergent angiocrine signals from LSECs elicit regeneration after immediateinjury and provoke fibrosis post chronic insult. The pro-fibrotic transition of vascular niche results from differential expression of stromal derived factor-1 (SDF-1) receptors, CXCR7 and CXCR418–21in LSECs. After acute injury, CXCR7 upregulation in LSECs acts in conjunction with CXCR4 to induce transcription factor Id1, deploying pro-regenerative angiocrine factors and triggering regeneration. Inducible deletion of Cxcr7 in adult mouse LSECs (Cxcr7iΔEC/iΔEC) impaired liver regeneration by diminishing Id1-mediated production of angiocrine factors9–11. By contrast, after chronic injury inflicted by iterative hepatotoxin (carbon tetrachloride) injection and bile duct ligation, constitutive FGFR1 signaling in LSECs counterbalanced CXCR7-dependent pro-regenerative response and augmented CXCR4 expression. This predominance of CXCR4 over CXCR7 expression shifted angiocrine response of LSECs, stimulating proliferation of desmin+hepatic stellate-like cells22,23 and enforcing a pro-fibrotic vascular niche. EC-specific ablation of either Fgfr1 (Fgfr1iΔEC/iΔEC) or Cxcr4 (Cxcr4iΔEC/iΔEC) in mice restored pro-regenerative pathway and prevented FGFR1-mediated maladaptive subversion of angiocrine factors. Similarly, selective CXCR7 activation in LSECs abrogated fibrogenesis. Thus, we have demonstrated that in response to liver injury, differential recruitment of pro-regenerative CXCR7/Id1 versus pro-fibrotic FGFR1/CXCR4 angiocrine pathways in vascular niche balances regeneration and fibrosis. These results provide a therapeutic roadmap to achieve hepatic regeneration without provoking fibrosis1,2,4.
CXCR7 binds chemokines CXCL11 (I-TAC) and CXCL12 (SDF-1) but does not act as a classical chemoattractant receptor. Using CCX771, a novel small molecule with high affinity and selectivity for CXCR7, we found that, although CXCR7 is dispensable for “bare filter” in vitro chemotaxis, CXCR7 plays an essential role in the CXCL12/CXCR4-mediated transendothelial migration (TEM) of CXCR4+CXCR7+ human tumor cells. Importantly, although CXCL11 is unable to stimulate directly the migration of these cells, it acts as a potent antagonist of their CXCL12-induced TEM. Furthermore, even though this TEM is driven by CXCR4, the CXCR7 ligand CCX771 is substantially more potent at inhibiting it than the CXCR4 antagonist AMD3100, which is more than 100 times weaker at inhibiting TEM when compared with its ability to block bare filter chemotaxis. Far from being a “silent” receptor, we show that CXCR7 displays early hallmark events associated with intracellular signaling. Upon cognate chemokine binding, CXCR7 associates with β-arrestin2, an interaction that can be blocked by CXCR7-specific mAbs. Remarkably, the synthetic CXCR7 ligand CCX771 also potently stimulates β-arrestin2 recruitment to CXCR7, with greater potency and efficacy than the endogenous chemokine ligands. These results indicate that CXCR7 can regulate CXCL12-mediated migratory cues, and thus may play a critical role in driving CXCR4+CXCR7+ tumor cell metastasis and tissue invasion. CXCR7 ligands, such as the chemokine CXCL11 and the newly described synthetic molecule CCX771, may represent novel therapeutic opportunities for the control of such cells.
The chemokine CXCL12/stromal cell-derived factor-1 and its receptor CXCR4 play a major role in tumor invasion, proliferation, and metastasis. Recently, CXCR7 was identified as a novel, alternate receptor for CXCL12 and CXCL11/I-TAC. Because both chemokines are expressed abundantly in human astrocytomas and glioblastomas, we investigated the occurrence and function of both receptors in astroglial tumors. In situ, CXCR7 is highly expressed on tumor endothelial, microglial, and glioma cells whereas CXCR4 has a much more restricted localization; CXCL12 is often colocalized with CXCR7. CXCR7 transcription in tumor homogenates increased with malignancy. In vitro, CXCR7 was highly expressed in all glioma cell lines investigated whereas CXCR4 was only scarcely transcribed on one of eight lines. In contrast, a tumor stem-like cell line preferentially expressed CXCR4 which diminished upon differentiation, whereas CXCR7 increased drastically. Stimulation of CXCR7-positive glioma cells (CXCR4-and CXCR3-negative) by CXCL12 induced transient phosphorylation of extracellular signal-regulated kinases Erk1/2, indicating that the receptor is functionally active. The phosphoinositide-specific phospholipase C inhibitor U73122 effectively inhibited Erk activation and suggests that the mitogen-activated protein kinase pathway is activated indirectly. Whereas proliferation and migration were little influenced, chemokine stimulation prevented camptothecin-and temozolomide-induced apoptosis. The selective CXCR7 antagonist CCX733 reduced the antiapoptotic effects of CXCL12 as shown by nuclear (Nicoletti) staining, caspase-3/7 activity assays, and cleavage of poly(ADP-ribose) polymerase-1. Thus, CXCR7 is a functional receptor for CXCL12 in astrocytomas/glioblastomas and mediates resistance to druginduced apoptosis. Whereas CXCR7 is found on "differentiated" glioma cells, the alternate receptor CXCR4 is also localized on glioma stem-like cells. Cancer Res; 70(8); 3299-308. ©2010 AACR.
Cytomegalovirus is a widespread opportunistic pathogen affecting immunocompromised individuals in whom neutrophils may mediate virus dissemination and contribute to progression of disease. Recent sequence analysis suggests that genes absent or altered in attenuated strains may influence pathogenesis. We have found two genes, UL146 and UL147, whose products have sequence similarity to ␣ (CXC) chemokines. UL146 encodes a protein, designated vCXC-1, that is a 117-aa glycoprotein secreted into the culture medium as a late gene product, where its presence correlates with the ability to attract human neutrophils. Recombinant vCXC-1 is a fully functional chemokine, inducing calcium mobilization, chemotaxis, and degranulation of neutrophils. High-affinity vCXC-1 binding is shown to be mediated via CXCR2, but not CXCR1. vCXC-1 exhibits a potency approaching that of human IL-8. As the first example of a virus-encoded ␣ chemokine, vCXC-1 may ensure the active recruitment of neutrophils during cytomegalovirus infection, thereby providing for efficient dissemination during acute infection and accounting for the prominence of this leukocyte subset in cytomegalovirus disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.