Damage caused by introduced species results from the high population densities and large body sizes that they attain in their new location. Escape from the effects of natural enemies is a frequent explanation given for the success of introduced species. Because some parasites can reduce host density and decrease body size, an invader that leaves parasites behind and encounters few new parasites can experience a demographic release and become a pest. To test whether introduced species are less parasitized, we have compared the parasites of exotic species in their native and introduced ranges, using 26 host species of molluscs, crustaceans, fishes, birds, mammals, amphibians and reptiles. Here we report that the number of parasite species found in native populations is twice that found in exotic populations. In addition, introduced populations are less heavily parasitized (in terms of percentage infected) than are native populations. Reduced parasitization of introduced species has several causes, including reduced probability of the introduction of parasites with exotic species (or early extinction after host establishment), absence of other required hosts in the new location, and the host-specific limitations of native parasites adapting to new hosts.
Introduced plant populations lose interactions with enemies, mutualists and competitors from their native ranges, and gain interactions with new species, under new abiotic conditions. From a biogeographical perspective, differences in the assemblage of interacting species, as well as in abiotic conditions, may explain the demographic success of the introduced plant populations relative to conspecifics in their native range. Within invaded communities, the new interactions and conditions experienced by the invader may influence both its demographic success and its effects on native biodiversity. Here, we examine indirect effects involving enemies, mutualists and competitors of introduced plants, and effects of abiotic conditions on biotic interactions. We then synthesize ideas building on Darwin's idea that the kinds of new interactions gained by an introduced population will depend on its relatedness to native populations. This yields a heuristic framework to explain how biotic interactions and abiotic conditions influence invader success. We conclude that species introductions generally alter plantsÕ interactions with enemies, mutualists and competitors, and that there is increasing evidence that these altered interactions jointly influence the success of introduced populations.Ecology Letters (2006) 9: 726-740
Vultures (Accipitridae and Cathartidae) are the only known obligate scavengers. They feed on rotting carcasses and are the most threatened avian functional group in the world. Possible effects of vulture declines include longer persistence of carcasses and increasing abundance of and contact between facultative scavengers at these carcasses. These changes could increase rates of transmission of infectious diseases, with carcasses serving as hubs of infection. To evaluate these possibilities, we conducted a series of observations and experimental tests of the effects of vulture extirpation on decomposition rates of livestock carcasses and mammalian scavengers in Kenya. We examined whether the absence of vultures changed carcass decomposition time, number of mammalian scavengers visiting carcasses, time spent by mammals at carcasses, and potential for disease transmission at carcasses (measured by changes in intraspecific contact rates). In the absence of vultures, mean carcass decomposition rates nearly tripled. Furthermore, the mean number of mammals at carcasses increased 3-fold (from 1.5 to 4.4 individuals/carcass), and the average time spent by mammals at carcasses increased almost 3-fold (from 55 min to 143 min). There was a nearly 3-fold increase in the mean number of contacts between mammalian scavengers at carcasses without vultures. These results highlight the role of vultures in carcass decomposition and level of contact among mammalian scavengers. In combination, our findings lead us to hypothesize that changes in vulture abundance may affect patterns of disease transmission among mammalian carnivores.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.