For a new diploid or homoploid hybrid species to become established, it must diverge ecologically from parental genotypes. Otherwise the hybrid neospecies will be overcome by gene flow or competition. We initiated a series of experiments designed to understand how the homoploid hybrid species, Helianthus paradoxus, was able to colonize salt marsh habitats, when both of its parental species (H. annuusxH. petiolaris) are salt sensitive. Here, we report on the results of a quantitative trait locus (QTL) analysis of mineral ion uptake traits and survivorship in 172 BC2 hybrids between H. annuus and H. petiolaris that were planted in H. paradoxus salt marsh habitat in New Mexico. A total of 14 QTLs were detected for mineral ion uptake traits and three for survivorship. Several mineral ion QTLs mapped to the same position as the survivorship QTLs, confirming previous studies, which indicated that salt tolerance in Helianthus is achieved through increased Ca uptake, coupled with greater exclusion of Na and related mineral ions. Of greater general significance was the observation that QTLs with effects in opposing directions were found for survivorship and for all mineral ion uptake traits with more than one detected QTL. This genetic architecture provides an ideal substrate for rapid ecological divergence in hybrid neospecies and offers a simple explanation for the colonization of salt marsh habitats by H. paradoxus. Finally, selection coefficients of +0.126, -0.084 and -0.094 for the three survivorship QTLs, respectively, are sufficiently large to account for establishment of new, homoploid hybrid species.
Diploid hybrid speciation in plants is often accompanied by rapid ecological divergence between incipient neospecies and their parental taxa. One plausible means by which novel adaptation in hybrid lineages may arise is transgressive segregation, that is, the generation of extreme phenotypes that exceed those of the parental lines. Early generation (BC2) hybrids between two wild, annual sunflowers, Helianthus annuus and Helianthus petiolaris, were used to study directional selection on transgressive characters associated with the origin of Helianthus paradoxus, a diploid hybrid species adapted to extremely saline marshes. The BC2 plants descended from a single F1 hybrid backcrossed toward H. petiolaris. The strength of selection on candidate adaptive traits in the interspecific BC2 was measured in natural H. paradoxus salt marsh habitat. Positive directional selection was detected for leaf succulence and Ca uptake, two traits that are known to be important in salt stress response in plants. Strong negative directional selection operated on uptake of Na and correlated elements. A significant decrease in trait correlations over time was observed in the BC2 population for Na and Ca content, suggesting an adaptive role for increased Ca uptake coupled with increased net exclusion of Na from leaves. Patterns of directional selection in BC2 hybrids were concordant with character expression in the natural hybrid species, H. paradoxus, transplanted into the wild. Moreover, the necessary variation for generating the H. paradoxus phenotype existed only in the BC2 population, but not in samples of the two parental species, H. annuus and H. petiolaris. These results are consistent with the hypothesis that transgressive segregation of elemental uptake and leaf succulence contributed to the origin of salt adaptation in the diploid hybrid species H. paradoxus.
Diploid hybrid speciation in plants is often accompanied by rapid ecological divergence between incipient neospecies and their parental taxa. One plausible means by which novel adaptation in hybrid lineages may arise is transgressive segregation, that is, the generation of extreme phenotypes that exceed those of the parental lines. Early generation (BC 2 ) hybrids between two wild, annual sunflowers, Helianthus annuus and Helianthus petiolaris, were used to study directional selection on transgressive characters associated with the origin of Helianthus paradoxus, a diploid hybrid species adapted to extremely saline marshes. The BC 2 plants descended from a single F 1 hybrid backcrossed toward H. petiolaris. The strength of selection on candidate adaptive traits in the interspecific BC 2 was measured in natural H. paradoxus salt marsh habitat. Positive directional selection was detected for leaf succulence and Ca uptake, two traits that are known to be important in salt stress response in plants. Strong negative directional selection operated on uptake of Na and correlated elements. A significant decrease in trait correlations over time was observed in the BC 2 population for Na and Ca content, suggesting an adaptive role for increased Ca uptake coupled with increased net exclusion of Na from leaves. Patterns of directional selection in BC 2 hybrids were concordant with character expression in the natural hybrid species, H. paradoxus, transplanted into the wild. Moreover, the necessary variation for generating the H. paradoxus phenotype existed only in the BC 2 population, but not in samples of the two parental species, H. annuus and H. petiolaris. These results are consistent with the hypothesis that transgressive segregation of elemental uptake and leaf succulence contributed to the origin of salt adaptation in the diploid hybrid species H. paradoxus.
The diploid hybrid species Helianthus paradoxus is restricted to salt marshes with sodium concentrations that exceed those found in the habitats of its progenitors, H. annuus and H. petiolaris. The observed association with saline habitats has led to the hypothesis that H. paradoxus is more salt tolerant than its progenitors. This hypothesis was tested by growing all three species in three NaCl treatments (0 mmol/L, 100 mmol/L, and 200 mmol/L). Helianthus paradoxus treated with NaCl was found to be more than five times as fit, in terms of biomass and survivorship, than its progenitors. Selection for salt tolerance in early generation hybrids may have contributed to the formation of H. paradoxus because theory predicts that homoploid hybrid speciation is feasible even when selection favoring hybrid genotypes is much weaker. Additionally, we show that H. paradoxus is significantly different from its parental species for several traits that often distinguish salt-tolerant species and suggest a mechanistic basis for the elevated salt tolerance expressed by H. paradoxus.
It is currently thought that most angiosperms transmit their mitochondrial genomes maternally. Maternal transmission limits opportunities for genetic heterogeneity (heteroplasmy) of the mitochondrial genome within individuals. Recent studies of the gynodioecious species Silene vulgaris and Silene acaulis, however, document both direct and indirect evidence of mitochondrial heteroplasmy, suggesting that the mitochondrial genome is at times transmitted via paternal leakage. This heteroplasmy allows the generation of multi-locus recombinants, as documented in recent studies of both species. A prior study that employed quantitative PCR (q-PCR) on a limited sample provided direct evidence of heteroplasmy in the mitochondrial gene atp1 in S. vulgaris. Here, we apply the q-PCR methods to a much larger sample and extend them to incorporate the study of an additional atp1 haplotype along with two other haplotypes of the mitochondrial gene cox1 to evaluate the origin, extent, and transmission of mitochondrial genome heteroplasmy in S. vulgaris. We first calibrate our q-PCR methods experimentally and then use them to quantify heteroplasmy in 408 S. vulgaris individuals sampled from 22 natural populations located in Virginia, New York, and Tennessee. Sixty-one individuals exhibit heteroplasmy, including five that exhibited the joint heteroplasmy at both loci that is a prerequisite for effective recombination. The heteroplasmic individuals were distributed among 18 of the populations studied, demonstrating that heteroplasmy is a widespread phenomenon in this species. Further, we compare mother and offspring from 71 families to determine the rate of heteroplasmy gained and lost via paternal leakage and vegetative sorting across generations. Of 17 sibships exhibiting cox1 heteroplasmy and 14 sibships exhibiting atp1 heteroplasmy, more than half of the observations of heteroplasmy are generated via paternal leakage at the time of fertilization, with the rest being inherited from a heteroplasmic mother. Moreover, we show that the average paternal contribution during paternal leakage is about 12%. These findings are surprising, given that the current understanding of gynodioecy assumes that mitochondrial cytoplasmic male sterility elements are strictly maternally inherited. Knowledge of the dynamics of mitochondrial populations within individuals plays an important role in understanding the evolution of gynodioecy, and we discuss our findings within this context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.