The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
This note is a response to [7] in which it is claimed that [13, Proposition 11] is false. We demonstrate here that this assertion in [7] is false, and is based on a misreading of the notion of set membership in [13, Proposition 11]. We maintain that [13, Proposition 11] is true. * Authors are listed in alphabetical order.
International audienceThe PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved
We investigate the task of 2D articulated human pose estimation in unconstrained still images. This is extremely challenging because of variation in pose, anatomy, clothing, and imaging conditions. Current methods use simple models of body part appearance and plausible configurations due to limitations of available training data and constraints on computational expense. We show that such models severely limit accuracy. Building on the successful pictorial structure model (PSM) we propose richer models of both appearance and pose, using state-of-the-art discriminative classifiers without introducing unacceptable computational expense. We introduce a new annotated database of challenging consumer images, an order of magnitude larger than currently available datasets, and demonstrate over 50% relative improvement in pose estimation accuracy over a stateof-the-art method.
We investigate the problem of automatically labelling appearances of characters in TV or film material. This is tremendously challenging due to the huge variation in imaged appearance of each character and the weakness and ambiguity of available annotation. However, we demonstrate that high precision can be achieved by combining multiple sources of information, both visual and textual. The principal novelties that we introduce are: (i) automatic generation of time stamped character annotation by aligning subtitles and transcripts; (ii) strengthening the supervisory information by identifying when characters are speaking; (iii) using complementary cues of face matching and clothing matching to propose common annotations for face tracks. Results are presented on episodes of the TV series "Buffy the Vampire Slayer".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.