Today's business enterprises must deal with global competition, reduce the cost of doing business, and rapidly develop new services and products. To address these requirements enterprises must constantly reconsider and optimize the way they do business and change their information systems and applications to support evolving business processes. Workflow technology facilitates these by providing methodologies and software to support (i) business process modeling to capture business processes as workflow specifications, (ii) business process reengineering to optimize specified processes, and (iii) workflow automation to generate workflow implementations from workflow specifications. This paper provides a high-level overview of the current workflow management methodologies and software products. In addition, we discuss the infrastructure technologies that can address the limitations of current commercial workflow technology and extend the scope ~nd mission ofworkflow management systems to support increased workflow automation in complex real-world environments involving heterogeneous, autonomous, and distributed information systems. In particular, we discuss how distributed object management and customized transaction management can support further advances in the commercial state of the art in this area.
Future information processing environments will consist of a vast network of heterogeneous, autonomous, and distributed computing resources, including computers (from mainframe to personal), information-intensive applications, and data (files and databases). A key challenge in this environment is providing capabilities for combining this varied collection of resources into an integrated distributed system, allowing resources to be flexibly combined, and their activities coordinated, to address challenging new information processing requirements. In this paper, we describe the concept of distributed object management, and identify its role in the development of these open, interoperable systems. We identify the key aspects of system architectures supporting distributed object management, and describe specific elements of a distributed object management system being developed at GTE Laboratories.
This paper describes the basic data model of an object-oriented database and the basic architecture of the system implementing it. In particular, a secondary storage segmentation scheme and a transaction-processing scheme are discussed. The segmentation scheme allows for arbitrary clustering of objects, including duplicates. The transaction scheme allows for many different sharing protocols ranging from those that enforce serializability to those that are nonserializable and require communication with the server only on demand. The interaction of these two features is described such that segment-level transfer and object-level locking is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.