The estimation of phase errors from digital-holography data is critical for applications such as imaging or wave-front sensing. Conventional techniques require multiple i.i.d. data and perform poorly in the presence of high noise or large phase errors. In this paper we propose a method to estimate isoplanatic phase errors from a single data realization. We develop a model-based iterative reconstruction algorithm which computes the maximum a posteriori estimate of the phase and the speckle-free object reflectance. Using simulated data, we show that the algorithm is robust against high noise and strong phase errors.
, "Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry," Opt. Eng. Abstract. This paper develops wave-optics simulations which explore the estimation accuracy of digital-holographic detection for wavefront sensing in the presence of distributed-volume or "deep" turbulence and detection noise. Specifically, the analysis models spherical-wave propagation through varying deep-turbulence conditions along a horizontal propagation path and formulates the field-estimated Strehl ratio as a function of the diffractionlimited sampling quotient and signal-to-noise ratio. Such results will allow the reader to assess the number of pixels, pixel field of view, pixel-well depth, and read-noise standard deviation needed from a focal-plane array when using digital-holographic detection in the off-axis image plane recording geometry for deep-turbulence wavefront sensing. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
This paper explores the use of single-shot digital holography data and a novel algorithm, referred to as multiplane iterative reconstruction (MIR), for imaging through distributed-volume aberrations. Such aberrations result in a linear, shift-varying or "anisoplanatic" physical process, where multiple-look angles give rise to different point spread functions within the field of view of the imaging system. The MIR algorithm jointly computes the maximum a posteriori estimates of the anisoplanatic phase errors and the speckle-free object reflectance from the single-shot digital holography data. Using both simulations and experiments, we show that the MIR algorithm outperforms the leading multiplane image-sharpening algorithm over a wide range of anisoplanatic conditions.
Shock waves will form by turning supersonic or locally supersonic flow and result in an increase in the freestream density downstream of the shock. This increase leads to optical distortions that limit the effectiveness of aircraft-mounted laser systems. In this paper, analytic expressions are developed to describe these optical distortions in terms of the optical-path difference (OPD). Pupil-plane disturbances imposed by the shock are studied for two cases: when the shock is parallel to the propagation direction and when the shock is on an angle relative to the propagation direction. Upon propagation from the pupil plane, the analysis shows that shock-induced phase discontinuities can sometimes cause the irradiance pattern in the image plane to bifurcate. Despite a large amount of tilt in the pupil plane, the bifurcated irradiance pattern does not map to a proportional shift in the image plane. The implications that these findings have on Shack–Hartmann wavefront sensor (SHWFS) data are also explored. The results show that least-squares reconstruction from the SHWFS data yield accurate estimates of the change in OPD across the shock when the magnitude of the phase difference [Formula: see text] caused by the shock is between 0 and approximately [Formula: see text]. However, when [Formula: see text], the results show that least-squares reconstruction begins to severely underestimate the change in OPD across the shock. Such results will inform future efforts looking to develop aircraft-mounted laser systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.