Flavonoids and related structures (e.g., flavones, isoflavones, flavanones, catechins) exert various biological effects, including anticarcinogenic, antioxidant and (anti-)estrogenic effects, and modulation of sex hormone homeostasis. A key enzyme in the synthesis of estrogens from androgens is aromatase (cytochrome P450 19; CYP19). We investigated the effects of various natural and synthetic flavonoids on the catalytic activity and promoter-specific expression of aromatase in H295R human adrenocortical carcinoma cells. Natural flavones were consistently more potent inhibitors than flavanones. IC(50) values for 7-hydroxyflavone, chrysin, and apigenin were 4, 7, and 20 microM, respectively; for the flavanones 7-hydroxyflavanone and naringenin the IC(50) values were 65 and 85 microM, respectively. The steroidal aromatase inhibitor (positive control) 4-hydroxyandrostenedione had an IC(50) of 20 nM. The inhibition by apigenin and naringenin coincided with some degree of cytotoxicity at 100 microM. The natural flavonoid derivative rotenone (IC(50) 0.3 microM) was the most potent aromatase inhibitor tested. Several synthetic flavonoid and structurally related quinolin-4-one analogs inhibited aromatase activity. The most potent inhibitor was 4'-tert-butyl-quinolin-4-one (IC(50) 2 microM), followed by two 2-pyridinyl-substituted alpha-naphthoflavones (IC(50)s 5 and >30 microM). The two 2-pyridinyl-substituted gamma-naphthoflavones consistently produced biphasic concentration-response curves, causing about 1.5-fold aromatase induction at concentrations below 1 microM and inhibition above that level (IC(50)s 7 and >30 microM). The natural flavone quercetin and isoflavone genistein induced aromatase activity 4- and 2.5-fold induction, respectively, at 10 microM. This coincided with increased intracellular cAMP concentrations and increased levels of the cAMP-dependent pII and to a lesser extent 1.3 promoter-specific aromatase transcripts. These results shed light on the structure-activity relationships for aromatase inhibition as well as mechanisms of induction in human H295R cells.
Activators of the CFTR Cl- channel may be useful for therapy of cystic fibrosis. Short-circuit current ( Isc) measurements were done on human bronchial epithelial cells to characterize the best flavone and benzimidazolone CFTR activators identified by lead-based combinatorial synthesis and high-throughput screening. The 7,8-benzoflavone UCcf-029 was a potent activator of Cl- transport, with activating potency (<1 μM) being much better than other flavones, such as apigenin. The benzimidazolone UCcf-853 gave similar Isc but with lower potency (5–20 μM). In combination, the effect induced by maximal UCcf-029 and UCcf-029, UCcf-853, and apigenin increased strongly with increasing basal CFTR activity: for example, Kd for activation by UCcf-029 decreased from >5 to <0.4 μM with increasing basal Isc from ∼4 μA/cm2 to ∼12 μA/cm2. This dependence was confirmed in permeabilized Fischer rat thyroid cells stably expressing CFTR. Our results demonstrate efficacy of novel CFTR activators in bronchial epithelia and provide evidence that activating potency depends on basal CFTR activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.