The paper reports an experimental investigation of flow through model porous medium adjacent to open flow in a two-dimensional channel. The model consists of circular cylindrical rods installed vertically on the bottom wall of the channel in regular square arrays. The channel height was kept constant but the ratio of rod height to channel height was varied to simulate different filling fractions. Various combinations of rod diameter and rod spacing were chosen to achieve solid volume fractions (ϕ) in the range 0.01⩽ϕ⩽0.50. A viscous fluid having a refractive index similar to that of the rods was selected as the working fluid. Particle image velocimetry was used to conduct detailed velocity measurements between the rods and in the open flow between the top edges of the rods and the top wall of the channel. From these measurements, values of the slip velocity at the interface between the rods and the open flow were determined. It was found that values of the slip velocity normalized by the maximum velocity in the open flow depend on solid volume fraction, rod spacing, and fraction of channel filled by rods. The slip velocity made dimensionless by the shear rate at the interface were higher for the larger filling fraction but independent of solid volume fraction and rod spacing.
Turbulent separation bubbles over and behind a two-dimensional forward–backward-facing step submerged in a deep turbulent boundary layer are investigated using a time-resolved particle image velocimetry. The Reynolds number based on the step height and free-stream velocity is 12 300, and the ratio of the streamwise length to the height of the step is 2.36. The upstream turbulent boundary layer thickness is 4.8 times the step height to ensure a strong interaction of the upstream turbulence structures with the separated shear layers over and behind the step. The velocity measurements were performed in streamwise–vertical planes at the channel mid-span and streamwise–spanwise planes at various vertical distances from the wall. The unsteady characteristics of the separation bubbles and their associated turbulence structures are studied using a variety of techniques including linear stochastic estimation, proper orthogonal decomposition and variable-interval time averaging. The results indicate that the low-frequency flapping motion of the separation bubble over the step is induced by the oncoming large-scale alternating low- and high-velocity streaky structures. Dual separation bubbles appear periodically over the step at a higher frequency than the flapping motion, and are attributed to the inherent instability in the rear part of the mean separation bubble. The separation bubble behind the step exhibits a flapping motion at the same frequency as the separation bubble over the step, but with a distinct phase delay. At instances when an enlarged separation bubble is formed in front of the step, a pair of vertical counter-rotating vortices is formed in the immediate vicinity of the leading edge.
An experimental study was undertaken to investigate the effects of roughness on the structure of turbulent boundary layers in open channels. The study was carried out using a laser Doppler anemometer in shallow flows for three different types of rough surface, as well as a hydraulically smooth surface. The flow Reynolds number based on the boundary layer momentum thickness ranged from 1400 to 4000. The boundary layer thickness was comparable with the depth of flow and the turbulence intensity in the channel flow varied from 2 to 4 percent. The defect profile was correlated using an approach which allowed both the skin friction and wake strength to vary. The wake parameter was observed to vary significantly with the type of surface roughness in contradiction to the “wall similarity” hypothesis. Wall roughness also led to higher turbulence levels in the outer region of the boundary layer. The profound effect of surface roughness on the outer region as well as the effect of channel turbulence on the main flow indicates a strong interaction, which must be accounted for in turbulence models. [S0098-2202(00)00803-8]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.