The systematics of the New Zealand octopods have only been reviewed twice in the last 100 years. In these revisions many species have been provisionally classified in the genus Octopus. Recent genetic studies have synonymized some New Zealand species with octopuses from other regions. The present study investigates the systematics and phylogeny of octopuses from New Zealand using eighty eight specimens, three mitochondrial genes (16S rRNA, cytochrome c oxidase subunit I, and cytochrome c oxidase subunit III) and one nuclear gene (Rhodopsin). Forty-four new octopod DNA sequences (belonging to 13 species) were included, adding to the 83 existing sequences from GenBank. All sequences were used to generate phylogenetic trees based on Maximum Likelihood (ML) and Bayesian inference (BI), with a data set composed by 97 species, including octopod sister groups and Vampyroteuthis infernalis as an outgroup. Gene tree and species delimitation analyses revealed a distinct genetic difference between two sympatric Graneledone subspecies, which we propose as valid species. Muusoctopus tangaroa is a sister species of M. thielei from Kerguelen; while Enteroctopus zealandicus forms a clade with E. megalocyathus from South America and E. dofleini from the North Pacific. Similarly, Octopus campbelli, O. huttoni, and O. mernoo form a monophyletic group with Robsonella fontaniana from South America, Scaeurgus unicirrhus from the Atlantic and O. pallidus from Australia. Pinnoctopus cordiformis is close to Grimpella thaumastocheir and several species of Octopus sensu lato as in previous phylogenetic studies. This study suggests that octopuses from New Zealand have different phylogenetic and biogeographic origins and represent independent radiations into this region.
Cirrate octopods are considered to resemble the ancestor of all octopuses. Cirrates inhabit the deep ocean and are characterized by the presence of fins, a cartilaginous inner shell and a single row of suckers alternating with pairs of cirri thus comprising uniserial suckers and biserial cirri. The objective of this contribution is to improve the taxonomy of Opisthoteuthis bruuni from the southeastern Pacific Ocean and suggest a new hypothesis of cirrate phylogeny. Given that the most complete molecular data set for cirrates available in public databases is comprised almost exclusively of 16S 2 rRNA gene sequences, we compared morphological and mitochondrial gene 16S rRNA data (generated in this study) from the genus Opisthoteuthis from the southeastern Pacific Ocean. Additionally, we sequenced Opisthoteuthis chathamensis, Opisthoteuthis mero and Luteuthis dentatus from the southwestern Pacific, as along with Cirroctopus mawsoni from Antarctic waters. The morphological data and the phylogenetic analysis confirm the status of Opisthoteuthis bruuni as a member of genus Opisthoteuthis and the family Opisthoteuthidae. This re-description includes the first morphological characterization of the male and female adult stage of O. bruuni, in addition to reporting geographic and bathymetric range extensions.Opisthoteuthis bruuni presents conspicuous morphological features (small terminal fins, short cirri and U-shaped shell). Our phylogenetic tree supports three families: Cirroctopodidae, Cirroteuthidae, and Opisthoteuthidae; which is different from the phylogenetic arrangements previously reported.
<p>The taxonomy of the New Zealand freshwater mussels has been confounded because it is based on the highly variable shell morphology of the various species. It has been predicted that the virtually unknown genetics of the New Zealand species could hold the key to resolving the taxonomic confusion within this group and their standing within the worldwide mussel fauna.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.