Aim -Enhanced management of areas important for marine biodiversity are now obligations under a range of international treaties. Tracking data provide unparalleled information on the distribution of marine taxa, but there are no agreed guidelines that ensure these data are used consistently to identify biodiversity hotspots and inform marine management decisions. Here we develop methods to standardise the analysis of tracking data to identify sites of conservation importance at global and regional scales.Location -We applied these methods to the largest available compilation of seabird tracking data, covering 60 species, collected from 55 deployment locations ranging from the poles to the tropics.Methods -Key developments include a test for pseudo-replication to assess the independence of two groups of tracking data, an objective approach to define species-specific smoothing parameters (h values) for kernel density estimation based on area-restricted search behaviour, and an analysis to determine whether sites identified from tracked individuals are also representative for the wider population.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Foraging with tuna is a well-documented seabird strategy, referred to as facilitated foraging. However, despite this behaviour being considered almost obligatory in nutrient-poor tropical waters, little data exist on its relative importance to individual colonies. Therefore, to examine facilitated foraging under different patterns of nutrient availability, we tracked wedgetailed shearwaters Ardenna pacifica from 2 colonies, one tropical and one subtropical, situated in waters of contrasting productivity. Shearwater foraging behaviour was assessed relative to oceanographic covariates and predicted distributions for multiple tropical tuna species and ageclasses, simulated by an existing ecosystem model (SEAPODYM). Shearwaters from both colonies undertook long trips to deep, pelagic waters close to seamounts and foraged most often at fronts and eddies. Micronektonic and adult tuna age classes were highly correlated in space. Predation between these tuna age classes represents a likely source of facilitated foraging opportunities for shearwaters. At broad spatial scales, shearwaters consistently foraged in areas with higher predicted adult skipjack and micronektonic tuna densities and avoided adult bigeye tuna. At finer spatial scales, dynamic ocean features aggregated tuna of all sizes. Enhanced tuna density at these locations increased the likelihood of shearwater foraging activity. Long trips in the tropics targeted oligotrophic waters with higher tuna densities. Long trips in the subtropics targeted enhanced productivity, but in some years shifted to target the same oligotrophic, tuna-dense waters used by tropical conspecifics. We conclude that facilitated foraging with tuna is consistently important to the tropical breeding population and becomes increasingly important to the subtropical population in years of low marine productivity.
Our understanding of the niche concept will remain limited while the quantity and range of different food types eaten remain a dominant proxy for niche breadth, as this does not account for the broad ecological context that governs diet. Linking nutrition, physiology and behaviour is critical to predict the extent to which a species adjusts its nutritional niche breadth at the levels of prey ("prey composition niche," defined as the range of prey compositions eaten) and diet ("realized nutritional niche" is the range of diets composed through feeding on the prey). Here, we studied adult chick-rearing Australasian gannets Morus serrator to propose an integrative approach using sea surface temperature anomalies (SSTa), geographic location and bathymetry over different years, to explore their relationship with the nutritional composition of prey and diets (i.e. prey composition and nutritional niche breadth), habitat use and foraging behaviour. We found that gannets feed on prey that varied widely in their nutritional composition (have a broad prey composition niche), and composed diets from these prey that likewise varied in composition (have a broad realized nutritional niche), suggesting generalism at two levels of macronutrient selection. Across seasons, we established "nutritional landscapes" (hereafter nutriscapes), linking the nutritional content of prey (wet mass protein-to-lipid ratio-P:L) to the most likely geographic area of capture and bathymetry. Nutriscapes varied in their P:L from 6.06 to 15.28, over time, space and bathymetry (0-150 m). During warm water events (strong positive SSTa), gannets expanded their foraging habitat, increased their foraging trip duration and consumed prey and diets with low macronutrient content (wet mass proportions of P and L). They were also constrained to the smallest prey composition and realized nutritional niche breadths. Our findings are consistent with previous suggestions that dietary generalism evolves in heterogeneous environments, and provide a framework for understanding the nutritional goals in wild marine predators and how these goals drive ecological interactions and are, in turn, ultimately shaped by environmental fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.