We sequenced the genomes of a ~7,000 year old farmer from Germany and eight ~8,000 year old hunter-gatherers from Luxembourg and Sweden. We analyzed these and other ancient genomes1–4 with 2,345 contemporary humans to show that most present Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE) related to Upper Paleolithic Siberians3, who contributed to both Europeans and Near Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry. We model these populations’ deep relationships and show that EEF had ~44% ancestry from a “Basal Eurasian” population that split prior to the diversification of other non-African lineages.
We sequenced genomes from a ~7,000 year old early farmer from Stuttgart in Germany, an ~8,000 year old hunter-gatherer from Luxembourg, and seven ~8,000 year old hunter-gatherers from southern Sweden. We analyzed these data together with other ancient genomes and 2,345 contemporary humans to show that the great majority of present-day Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE), who were most closely related to Upper Paleolithic Siberians and contributed to both Europeans and Near Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry. We model these populations' deep relationships and show that EEF had ~44% ancestry from a "Basal Eurasian" lineage that split prior to the diversification of all other non-African lineages.
It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.The domestication of plants and animals was one of the most significant cultural and evolutionary transitions in the ∼200,000-y history of our species. Investigating when, where, and how domestication took place is therefore crucial for understanding the roots of complex societies. Domestication research is equally important to scholars from a wide range of disciplines, from evolutionary biology to sustainability science (1, 2). Research into both the process and spatiotemporal origins of domestication has accelerated significantly over the past decade through archaeological research, advances in DNA/ RNA sequencing technology, and methods used to recover and formally identify changes in interactions among plants and animals leading to domestication (2-4). In the spring of 2011, 25 scholars with a central interest in domestication and representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent progress in domestication research and identify challenges for the future. Our goal was to begin reconsidering plant and animal domestication within an integrated evolutionary and cultural framework that takes into account not just new genetic and archaeological data, but also ideas related to epigenetics, plasticity, geneby-environment interactions, gene-culture coevolution, and niche construction. Each of these concepts is relevant to understanding phenotypic change, heritability, and selection, and they are all fundamental components of the New Biology (5) and Expanded Modern Evolutionary Synthesis (6).
Bell Beaker pottery spread across western and central Europe beginning around 2750 BCE before disappearing between 2200–1800 BCE. The mechanism of its expansion is a topic of long-standing debate, with support for both cultural diffusion and human migration. We present new genome-wide ancient DNA data from 170 Neolithic, Copper Age and Bronze Age Europeans, including 100 Beaker-associated individuals. In contrast to the Corded Ware Complex, which has previously been identified as arriving in central Europe following migration from the east, we observe limited genetic affinity between Iberian and central European Beaker Complex-associated individuals, and thus exclude migration as a significant mechanism of spread between these two regions. However, human migration did have an important role in the further dissemination of the Beaker Complex, which we document most clearly in Britain using data from 80 newly reported individuals dating to 3900–1200 BCE. British Neolithic farmers were genetically similar to contemporary populations in continental Europe and in particular to Neolithic Iberians, suggesting that a portion of the farmer ancestry in Britain came from the Mediterranean rather than the Danubian route of farming expansion. Beginning with the Beaker period, and continuing through the Bronze Age, all British individuals harboured high proportions of Steppe ancestry and were genetically closely related to Beaker-associated individuals from the Lower Rhine area. We use these observations to show that the spread of the Beaker Complex to Britain was mediated by migration from the continent that replaced >90% of Britain’s Neolithic gene pool within a few hundred years, continuing the process that brought Steppe ancestry into central and northern Europe 400 years earlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.