The emergence of the “4th Industrial Revolution,” i.e. the convergence of artificial intelligence, the Internet of Things, advanced materials, and bioengineering technologies, could accelerate socioeconomic insecurities and anxieties or provide beneficial alternatives to the status quo. In the post-Covid-19 era, the entities that are best positioned to capitalize on these innovations are large firms, which use digital platforms and big data to orchestrate vast ecosystems of users and extract market share across industry sectors. Nonetheless, these technologies also have the potential to democratize ownership, broaden political-economic participation, and reduce environmental harms. We articulate the potential sociotechnical pathways in this high-stakes crossroads by analyzing cellular agriculture, an exemplary 4th Industrial Revolution technology that synergizes computer science, biopharma, tissue engineering, and food science to grow cultured meat, dairy, and egg products from cultured cells and/or genetically modified yeast. Our exploration of this space involved multi-sited ethnographic research in both (a) the cellular agriculture community and (b) alternative economic organizations devoted to open source licensing, member-owned cooperatives, social financing, and platform business models. Upon discussing how these latter approaches could potentially facilitate alternative sociotechnical pathways in cellular agriculture, we reflect upon the broader implications of this work with respect to the 4th Industrial Revolution and the enduring need for public policy reform.
In an effort to identify novel antithrombotics, we have investigated protease-activated receptor 4 (PAR4) antagonism by developing and evaluating a tool compound, UDM-001651, in a monkey thrombosis model. Beginning with a high-throughput screening hit, we identified an imidazothiadiazole-based PAR4 antagonist chemotype. Detailed structure−activity relationship studies enabled optimization to a potent, selective, and orally bioavailable PAR4 antagonist, UDM-001651. UDM-001651 was evaluated in a monkey thrombosis model and shown to have robust antithrombotic efficacy and no prolongation of kidney bleeding time. This combination of excellent efficacy and safety margin strongly validates PAR4 antagonism as a promising antithrombotic mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.