Bone marrow-derived mesenchymal stem cells (MSCs) are of therapeutic interest in a variety of neurological diseases. In this study, we wished to determine whether human MSCs secrete factors which protect cultured rodent cortical neurons from death by trophic factor withdrawal or nitric oxide (NO) exposure. Medium conditioned by MSCs attenuated neuronal death under these conditions, a process which was dependent on intact PI(3)kinase/Akt pathway signaling. Trophic withdrawal and NO exposure in cultured cortical neurons led to reduction in Akt signaling pathways, whereas NO administration activated p38 MAPkinase in neuronal cultures. Addition of MSC-conditioned medium significantly activated the PI3kinase/Akt pathway and in neurons exposed to NO, MSC-conditioned medium reduced p38 signaling. We show that MSCs secrete brain-derived neurotrophic factor (BDNF) and addition of anti-BDNF neutralising antibodies to MSC-conditioned medium attenuated its neuroprotective effect. Exposure of neurons to BDNF increased activation of Akt pathways and protected neurons from trophic factor withdrawal. These observations determine the mechanisms of neuroprotection offered by MSC-derived factors and suggest an important role for BDNF in neuronal protection.
BackgroundInflammation is known to play a pivotal role in mediating neuronal damage and axonal injury in a variety of neurodegenerative disorders. Among the range of inflammatory mediators, nitric oxide and hydrogen peroxide are potent neurotoxic agents. Recent evidence has suggested that oligodendrocyte peroxisomes may play an important role in protecting neurons from inflammatory damage.MethodsTo assess the influence of peroxisomal activation on nitric oxide mediated neurotoxicity, we investigated the effects of the peroxisomal proliferator activated receptor (PPAR) gamma agonist, pioglitazone in primary cortical neurons that were either exposed to a nitric oxide donor or co-cultured with activated microglia.ResultsPioglitazone protected neurons and axons against both nitric-oxide donor-induced and microglia-derived nitric oxide-induced toxicity. Moreover, cortical neurons treated with this compound showed a significant increase in the protein and gene expression of PPAR-gamma, which was associated with a concomitant increase in the enzymatic activity of catalase. In addition, the protection of neurons and axons against hydrogen peroxide-induced toxicity afforded by pioglitazone appeared to be dependent on catalase.ConclusionsCollectively, these observations provide evidence that modulation of PPAR-gamma activity and peroxisomal function by pioglitazone attenuates both NO and hydrogen peroxide-mediated neuronal and axonal damage suggesting a new therapeutic approach to protect against neurodegenerative changes associated with neuroinflammation.
MS is associated with the widespread accumulation of hyperphosphorylated neurofilament protein in neuronal somata, with the most marked accumulation in regions of cortical demyelination. This aberrant localisation of hyperphosphorylated neurofilament protein may contribute to neuronal dysfunction and degeneration in MS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.