Abstract-A fundamental problem of finding software applications that are highly relevant to development tasks is the mismatch between the high-level intent reflected in the descriptions of these tasks and low-level implementation details of applications. To reduce this mismatch we created an approach called Exemplar (EXEcutable exaMPLes ARchive) for finding highly relevant software projects from large archives of applications. After a programmer enters a natural-language query that contains high-level concepts (e.g., MIME, data sets), Exemplar retrieves applications that implement these concepts. Exemplar ranks applications in three ways. First, we consider the descriptions of applications. Second, we examine the Application Programming Interface (API) calls used by applcations. Third, we analyze the dataflow among those API calls. We performed two case studies (with professional and student developers) to evaluate how these three rankings contribute to the quality of the search results from Exemplar. The results of our studies show that the combined ranking of application descriptions and API documents yields the most-relevant search results. We released Exemplar and our case study data to the public.
Getting insight into different aspects of source code artifacts is increasingly important -yet there is little empirical research using large bodies of source code, and subsequently there are not much statistically significant evidence of common patterns and facts of how programmers write source code. We pose 32 research questions, explain rationale behind them, and obtain facts from 2,080 randomly chosen Java applications from Sourceforge. Among these facts we find that most methods have one or zero arguments or they do not return any values, few methods are overridden, most inheritance hierarchies have the depth of one, close to 50% of classes are not explicitly inherited from any classes, and the number of methods is strongly correlated with the number of fields in a class.
A fundamental problem of finding applications that are highly relevant to development tasks is the mismatch between the high-level intent reflected in the descriptions of these tasks and low-level implementation details of applications. To reduce this mismatch we created an approach called Exemplar (EXEcutable exaMPLes ARchive) for finding highly relevant software projects from large archives of applications. After a programmer enters a naturallanguage query that contains high-level concepts (e.g., MIME, data sets), Exemplar uses information retrieval and program analysis techniques to retrieve applications that implement these concepts. Our case study with 39 professional Java programmers shows that Exemplar is more effective than Sourceforge in helping programmers to quickly find highly relevant applications.
Software repositories hold applications that are often categorized to improve the effectiveness of various maintenance tasks. Properly categorized applications allow stakeholders to identify requirements related to their applications and predict maintenance problems in software projects. Manual categorization is expensive, tedious, and laborious -this is why automatic categorization approaches are gaining widespread importance. Unfortunately, for different legal and organizational reasons, the applications' source code is often not available, thus making it difficult to automatically categorize these applications. In this paper, we propose a novel approach in which we use Application Programming Interface (API) calls from third-party libraries for automatic categorization of software applications that use these API calls. Our approach is general since it enables different categorization algorithms to be applied to repositories that contain both source code and bytecode of applications, since API calls can be extracted from both the source code and byte-code. We compare our approach to a state-of-the-art approach that uses machine learning algorithms for software categorization, and conduct experiments on two large Java repositories: an open-source repository containing 3,286 projects and a closed-source repository with 745 applications, where the source code was not available. Our contribution is twofold: we propose a new approach that makes it possible to categorize software projects without any source code using a small number of API calls as attributes, and furthermore we carried out a comprehensive empirical evaluation of automatic categorization approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.