The vanilloid receptor-1 (VR1) is a ligand-gated, non-selective cation channel expressed predominantly by sensory neurons. VR1 responds to noxious stimuli including capsaicin, the pungent component of chilli peppers, heat and extracellular acidification, and it is able to integrate simultaneous exposure to these stimuli. These findings and research linking capsaicin with nociceptive behaviours (that is, responses to painful stimuli in animals have led to VR1 being considered as important for pain sensation. Here we have disrupted the mouse VR1 gene using standard gene targeting techniques. Small diameter dorsal root ganglion neurons isolated from VR1-null mice lacked many of the capsaicin-, acid- and heat-gated responses that have been previously well characterized in small diameter dorsal root ganglion neurons from various species. Furthermore, although the VR1-null mice appeared normal in a wide range of behavioural tests, including responses to acute noxious thermal stimuli, their ability to develop carrageenan-induced thermal hyperalgesia was completely absent. We conclude that VR1 is required for inflammatory sensitization to noxious thermal stimuli but also that alternative mechanisms are sufficient for normal sensation of noxious heat.
Capsaicin, resiniferatoxin, protons or heat have been shown to activate an ion channel, termed the rat vanilloid receptor-1 (rVR1), originally isolated by expression cloning for a capsaicin sensitive phenotype. Here we describe the cloning of a human vanilloid receptor-1 (hVR1) cDNA containing a 2517 bp open reading frame that encodes a protein with 92% homology to the rat vanilloid receptor-1. Oocytes or mammalian cells expressing this cDNA respond to capsaicin, pH and temperature by generating inward membrane currents. Mammalian cells transfected with human VR1 respond to capsaicin with an increase in intracellular calcium. The human VR1 has a chromosomal location of 17p13 and is expressed in human dorsal root ganglia and also at low levels throughout a wide range of CNS and peripheral tissues. Together the sequence homology, similar expression profile and functional properties confirm that the cloned cDNA represents the human orthologue of rat VR1.
An investigation was made into the sensitivity of cells in the macaque superior temporal sulcus (STS) to the sight of different perspective views of the head. This allowed assessment of (a) whether coding was 'viewer-centred' (view specific) or 'object-centred' (view invariant) and (b) whether viewer-centred cells were preferentially tuned to 'characteristic' views of the head. The majority of cells (110) were found to be viewer-centred and exhibited unimodal tuning to one view. 5 cells displayed object-centred coding responding equally to all views of the head. A further 5 cells showed 'mixed' properties, responding to all views of the head but also discriminating between views. 6 out of 56 viewer and object-centred cells exhibited selectivity for face identity or species. Tuning to view varied in sharpness. For most (54/73) cells the angle of perspective rotation reducing response to half maximal was 45-70 degrees but for 19/73 it was greater than 90 degrees. More cells were optimally tuned to characteristic views of the head (the full face or profile) than to other views. Some cells were, however, found tuned to intermediate views throughout the full 360 degree range. This coding of many distinct head views may have a role in the analysis of social signals based on the interpretation of the direction of other individuals' attention.
Physiological recordings along the length of the upper bank of the superior temporal sulcus (STS) revealed cells each of which was selectively responsive to a particular view of the head and body. Such cells were grouped in large patches 3-4 mm across. The patches were separated by regions of cortex containing cells responsive to other stimuli. The distribution of cells projecting from temporal cortex to the posterior regions of the inferior parietal lobe was studied with retrogradely transported fluorescent dyes. A strong temporoparietal projection was found originating from the upper bank of the STS. Cells projecting to the parietal cortex occurred in large patches or bands. The size and periodicity of modules defined through anatomical connections matched the functional subdivisions of the STS cortex involved in face processing evident in physiological recordings. It is speculated that the temporoparietal projections could provide a route through which temporal lobe analysis of facial signals about the direction of others' attention can be passed to parietal systems concerned with spatial awareness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.