The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis.
The current study used MR imaging to determine the volume of the cerebellum and its component parts in the brain of three adult male African elephants (Loxodonta africana) and compared this with published data from Asian elephants and other mammalian species including odontocete cetaceans, primates, chiropterans, insectivores, carnivores, and artiodactyls. The cerebellum of the adult elephant has a volume of $925 mL (average of both African and Asian species). Allometric analysis indicates that the elephant has the largest relative cerebellum size of all mammals studied to date. In addition, both odontocete cetaceans and microchiropterans appear to have large relative cerebellar sizes. The vermal and hemispheric components of the African elephant cerebellum are both large relative to other mammals of similar brain size, however, for odontocete cetaceans the vermal component is small and the hemispheric component is large. These volumetric observations are related to life-histories and anatomies of the species investigated. The current study provides context for one aspect of the elephant brain in the broader picture of mammalian brain evolution. Anat Rec, 295:661-672, 2012. V C 2012 Wiley Periodicals, Inc.
This study provides quantitative data on the extent of gyrencephaly in the large-brained African elephant and several species of cetaceans (from smaller to larger brained) in comparison with other mammals. Across three mammalian orders (primates, carnivores, and artiodactyls), the species with the larger brains are more gyrencephalic with each order, exhibiting a specific negative allometry. The African elephant, with a 5-kg brain, has a gyrencephalic index (GI) of 3.89, which, though highly gyrencephalic, is not more so than would be predicted for a mammal with a 5-kg brain. The cetaceans had an average GI of 5.43, are the most gyrencephalic mammals studied to date, and are more gyrencephalic than one would predict based on comparison with other mammals. No relationship between brain mass and GI was evident in the cetaceans as seen in other mammals, with all cetaceans showing similar GIs irrespective of brain mass (range of GI 5.23-5.70, range of brain mass 577-5617 g). This is yet another parameter indicating cetaceans to be neuroanatomical outliers. Two species of pinnipeds studied had GIs that were well above those seen for terrestrial carnivores, and the aquatic manatee was close to lissencephalic. Thus, all three groups of marine mammals showed unusual extents of cortical gyrencephaly, indicating a morphological alteration of the telencephalon associated with the return to the marine environment. The analysis suggests that cortical thickness and neuronal density are important factors in determining the extent of gyrencephaly across mammalian species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.