With the recent advances in electron microscopy (EM), computation, and nanofabrication, the original idea of reading DNA sequence directly from an image can now be tested. One approach is to develop heavy atom labels that can provide the contrast required for EM imaging. While evaluating tentative labels for the respective nucleobases in synthetic oligodeoxynucleotides (oligos), we developed a streamlined capillary electrophoresis (CE) protocol to assess the label stability, reactivity, and selectivity. We report our protocol using osmium tetroxide 2,2′-bipyridine (Osbipy) as a thymidine (T) specific label. The observed rates show that the labeling process is kinetically independent of both the oligo length, and the base composition. The conditions, i.e. temperature, optimal Osbipy concentration, and molar ratio of reagents, to promote 100% conversion of the starting oligo to labeled product were established. Hence the optimized conditions developed with the oligos could be leveraged to allow osmylation of effectively all Ts in single-stranded (ss) DNA, while achieving minimal mislabeling. In addition, the approach and methods employed here may be adapted to the evaluation of other prospective contrasting agents/labels to facilitate next-generation DNA sequencing by EM.
A major type of unwanted cells that accumulate in aging are anergic cytotoxic T cells. These cells often have virus-specific T cell receptors, as well as other surface markers that distinguish them from their youthful counterparts, and they are thought to play a major role in the decline of the immune system with age. Here we consider two surface markers thought to define these cells in mice, CD8 and Killer cell lectin-like receptor G1 (KLRG1), and a means we developed to remove these cells from the blood of aged C57BL/6 mice. Using antibodies with magnetic nanoparticles linked to their Fc domains, we first developed a method to use magnets to filter out the unwanted cells from the blood and later constructed a device that does this automatically. We demonstrated that this device could reduce the KLRG1-positive CD8 cell count in aged mouse blood by a factor of 7.3 relative to the total CD8 cell compartment, reaching a level typically seen only in very young animals.
We present “molecular threading”, a surface independent tip-based method for stretching and depositing single and double-stranded DNA molecules. DNA is stretched into air at a liquid-air interface, and can be subsequently deposited onto a dry substrate isolated from solution. The design of an apparatus used for molecular threading is presented, and fluorescence and electron microscopies are used to characterize the angular distribution, straightness, and reproducibility of stretched DNA deposited in arrays onto elastomeric surfaces and thin membranes. Molecular threading demonstrates high straightness and uniformity over length scales from nanometers to micrometers, and represents an alternative to existing DNA deposition and linearization methods. These results point towards scalable and high-throughput precision manipulation of single-molecule polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.