Hundreds of millions of people play computer games every day. For them, game content鈥攆rom 3D objects to abstract puzzles鈥攑lays a major entertainment role. Manual labor has so far ensured that the quality and quantity of game content matched the demands of the playing community, but is facing new scalability challenges due to the exponential growth over the last decade of both the gamer population and the production costs. Procedural Content Generation for Games (PCG-G) may address these challenges by automating, or aiding in, game content generation. PCG-G is difficult, since the generator has to create the content, satisfy constraints imposed by the artist, and return interesting instances for gamers. Despite a large body of research focusing on PCG-G, particularly over the past decade, ours is the first comprehensive survey of the field of PCG-G. We first introduce a comprehensive, six-layered taxonomy of game content: bits, space, systems, scenarios, design, and derived. Second, we survey the methods used across the whole field of PCG-G from a large research body. Third, we map PCG-G methods to game content layers; it turns out that many of the methods used to generate game content from one layer can be used to generate content from another. We also survey the use of methods in practice, that is, in commercial or prototype games. Fourth and last, we discuss several directions for future research in PCG-G, which we believe deserve close attention in the near future.
A negotiation between agents is typically an incomplete information game, where the agents initially do not know their opponent's preferences or strategy. This poses a challenge, as efficient and effective negotiation requires the bidding agent to take the other's wishes and future behavior into account when deciding on a proposal. Therefore, in order to reach better and earlier agreements, an agent can apply learning techniques to construct a model of the opponent. There is a mature body of research in negotiation that focuses on modeling the opponent, but there exists no recent survey of commonly used opponent modeling techniques. This work aims to advance and integrate knowledge of the field by providing a comprehensive survey of currently existing opponent models in a bilateral negotiation setting. We discuss all possible ways opponent modeling has been used to benefit agents so far, and we introduce a taxonomy of currently existing opponent models based on their underlying learning techniques. We also present techniques to measure the success of opponent models and provide guidelines for deciding on the appropriate performance measures for every opponent model type in our taxonomy.
Abstract-When two agents settle a mutual concern by negotiating with each other, they usually do not share their preferences so as to avoid exploitation. In such a setting, the agents may need to analyze each other's behavior to make an estimation of the opponent's preferences. This process of opponent modeling makes it possible to find a satisfying negotiation outcome for both parties. A large number of such opponent modeling techniques have already been introduced, together with different measures to assess their quality. The quality of an opponent model can be measured in two different ways: one is to use the agent's performance as a benchmark for the model's quality, the other is to directly evaluate its accuracy by using similarity measures. Both methods have been used extensively, and both have their distinct advantages and drawbacks. In this work we investigate the exact relation between the two, and we pinpoint the measures for accuracy that best predict performance gain. This leads us to new insights in how to construct an opponent model, and what we need to measure when optimizing performance.
Abstract. Every year, automated negotiation agents are improving on various domains. However, given a set of negotiation agents, current methods allow to determine which strategy is best in terms of utility, but not so much the reason of success. In order to study the performance of the individual elements of a negotiation strategy, we introduce an architecture that distinguishes three components which together constitute a negotiation strategy: the bidding strategy, the opponent model, and the acceptance condition. Our contribution to the field of bilateral negotiation is threefold: first, we show that existing state of the art agents are compatible with this architecture; second, as an application of our architecture, we systematically explore the space of possible strategies by recombining different strategy components; finally, we briefly review how the BOA architecture has been recently applied to evaluate the performance of strategy components and create novel negotiation strategies that outperform the state of the art.
Abstract. An important aim in bilateral negotiations is to achieve a win-win solution for both parties; therefore, a critical aspect of a negotiating agent's success is its ability to take the opponent's preferences into account. Every year, new negotiation agents are introduced with better learning techniques to model the opponent. Our main goal in this work is to evaluate and compare the performance of a selection of state-of-the-art online opponent modeling techniques in negotiation, and to determine under which circumstances they are beneficial in a real-time, online negotiation setting. Towards this end, we provide an overview of the factors influencing the quality of a model and we analyze how the performance of opponent models depends on the negotiation setting. This results in better insight into the performance of opponent models, and allows us to pinpoint well-performing opponent modeling techniques that did not receive much previous attention in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.